Heavy-duty brake wear emissions

an on-road measurement campaign using a novel fully open sampling system

Steinmetz, M.F.A. (Misja) | 28th ETH Nanoparticles Conference (Zürich) 19 June 2025

AT THE F

Introduction

Brake Wear Emissions project methodology

Heavy-duty full vehicle testing methodology

Development of full vehicle measurement methodology.

Important measurement parameters:

- Brake particle emissions (PN and PM)
- Brake temperature
- Braking torque
- Vehicle speed

Novel approach using open design brake wear emissions sampling.

Heavy-duty full vehicle testing methodology

Version 1 (tractor)

Heavy-duty full vehicle testing methodology

Version 2 (rigid truck)

Results of tractor trailer and rigid truck testing

innovation

- Urban gives highest PN emissions per km and Motorway the lowest.
- Similar dominant temperatures, significantly higher peaks for the tractor.
- Higher pump speeds seem to collect more brake wear particles and more background particles.

Results of tractor trailer and rigid truck testing

CEDES_ACTROS

innovation

Results of tractor trailer and rigid truck testing

- Urban gives highest P
- Similar dominant tem
- Higher pump speeds s

Results of tractor trailer and rigid truck testing

• Congested motorway driving is important for motorway figures

On-road Temperatures and Particles for **Heavy-Duty Brake** Wear

- Journal paper in MDPI's Atmosphere
- More detailed analysis and modelling of the heavy-duty on-road brake wear data collected in the PP012101 Pilot project
- Fully open sampling system to minimize impact on airflow and brake temperature
- Detailed models of on-road brake temperatures and brake wear emissions for a measured heavyduty tractor trailer
- Joint work with Jann Aschersleben and Aspasia Panagiotidou

Article

On-Road Measurements and Modelling of Disc Brake Temperatures and Brake Wear Particle Number Emissions on a **Heavy-Duty Tractor Trailer**

Misja Frederik Alban Steinmetz *⁽⁹⁾, Jann Aschersleben ⁽⁹⁾ and Aspasia Panagiotidou

MDPI

Results: Variable Correlations

- Selection cuts on braking force, temperature, and duration to filter data
- Clear correlation between total PN emissions and total work
 - Braking work: $W = \int P(t)dt$
 - Braking power: $P(t) = (F(t) \times r) \cdot \omega(t)$

Results: Variable Correlations

- Selection cuts on braking force, temperature, and duration to filter data
- Clear correlation between total PN
 emissions and total work
 - Braking work: $W = \int P(t) dt$
 - Braking power: $P(t) = (F(t) \times r) \cdot \omega(t)$
- In our measurement setup: no correlation between total PN emissions and starting disk temperature

Results: Variable Correlations

- Selection cuts on braking force, temperature, and duration to filter data
- Clear correlation between total PN emissions and total work
 - Braking work: $W = \int P(t) dt$
 - Braking power: $P(t) = (F(t) \times r) \cdot \omega(t)$
- In our measurement setup: no correlation between total PN emissions and starting disk temperature
- Correlation between PN emissions and PM emissions

Results: Disk Temperature Heating

- Model A*:
- $\Delta T(W) = a_1 W + a_2$
- Braking work: $W = \int P(t)dt$
- Mean absolute error: 5.4 °C

*Best fit parameters: $a_1 = (5.9 \pm 0.3) \times 10^{-5} \text{ °CJ}^{-1}$, $a_2 = (1.5 \pm 0.5) \text{ °C}$

19 June 2025 | Heavy-duty brake wear emissions

innovation 15

Results: Disk Temperature Heating

- Model A:
 - $\Delta T(W) = a_1 W + a_2$
 - Braking work: $W = \int P(t)dt$
 - Mean absolute error: 5.4 °C
- Model B*:
 - $\Delta T (W, T_0) = a_1 T_0^{\alpha} W + a_2$
 - Starting temperature: T₀
 - Mean absolute error: 4.2 °C

[×]Best fit parameters: $a_1 = (9.4 \pm 1.7) \times 10^{-7} \text{ °CJ}^{-1}$, $a_2 = (-0.2 \pm 0.3) \text{ °C}$, $\alpha = (9.0 \pm 0.3) \times 10^{-1}$

Results: Disk Temperature Cooling

- Model C*:
 - $\Delta T(Q) = b_1 Q + b_2$
- Cooling term: $Q = \int (T(t) T_{amb}(t)) dt$
- Mean absolute error: 2.2 °C

*Best fit parameters:
$$b_1 = (-2.05 \pm 0.01) \times 10^{-3} \text{ °CJ}^{-1}$$
,
 $b_2 = (-1.15 \pm 0.04) \text{ °C}$

Results: Disk Temperature Cooling

- Model C:
 - $\Delta T(Q) = b_1 Q + b_2$
- Cooling term: $Q = \int (T(t) T_{amb}(t)) dt$
- Mean absolute error: 2.2 °C
- Model D[×]:
 - $\Delta T(Q) = b_1 Q^\beta + b_2$
 - Mean absolute error: 2.0 °C

*Best fit parameters: $b_1 = (-2.05 \pm 0.01) \times 10^{-3} \text{ °CJ}^{-1}$, $b_2 = (-1.15 \pm 0.04) \text{ °C}$

Results: PN Emissions

- Model*:
 - $\mathsf{PN}(W) = c_1 W + c_2$
 - Braking work: $W = \int P(t) dt$
 - Mean absolute error: 1.5×10^9 #

*Best fit parameters:
$$c_1 = (2.2 \pm 0.2) \times 10^4 \text{ #/J}$$
, $c_2 = (-6.3 \pm 1.0) \times 10^8 \text{ #}$

Conclusions

- □ Highest number of braking events and emissions per kilometre on urban roads, lowest on the motorway
- □ Congested motorway driving has a relatively high number of braking events and emissions per kilometre
- □ The higher the braking work applied on the disc, the higher the PN emissions
- □ Brake temperature increase depends on both the braking work and the initial temperature of the disc
- □ Non-linear behaviour in the cooling of the braking disc
- Successful proof of concept for on-road HD brake wear measurements

nnovatio