

Comparison of non-CO₂ Turboshaft Engine Emissions using Jet A-1, HEFA- and FT-SPK

University of the Bundeswehr Munich Marius Rohkamp

Institute for Chemistry and Environmental Engineering & Institute for Aeronautical Engineering

17.06.2025

Introduction Motivation Setup Fuels Results

Summary & Outlook

m.rohkamp@unibw.de

Introduction

Why are Sustainable Aviation Fuels (SAF) important?

- The aviation sector agreed to be CO₂ neutral until 2050¹. While aircraft fleets will be gradually replaced or modernized, a portion of today's aircraft and engines will likely still be in operation by 2050, as the transition to alternative propulsion technologies progresses more slowly than in other sectors
- SAF, if they are sustainable, can have a big impact on CO₂ lifecycle
- Gas turbine engines emit CO₂, H₂O, CO, UHC, NO_x, VOC, particles (vPM and nvPM) and other emissions (direct and indirect emissions) - alternative fuels / SAF are known to reduce some of these emissions

¹ATAG. Beginner's Guide to Sustainable Aviation Fuel. April 2023.

m.rohkamp@unibw.de

Are SAF a "new" possibility to improve CO_2 & non- CO_2 emissions?

- SAFs are not entirely new, as early studies such as NASA APEX (2005) or AAFEX (2011) campaigns already demonstrated their potential to reduce non-CO₂ emissions
- Other campaigns lead to comparable conclusions alternative fuels (including SAF) can reduce nvPM mass and number concentrations
- ReFuelEU from 2025 to 2050 its mandatory to blend conventionel Jet A-1 with SAF

Motivation

Regulated and non-regulated aircraft engines

- The ICAO Annex 16 Vol. II regulates gaseous and nvPM emissions of turbojet and turbofan engines (F_{00} \geq 26,7 kN)
- Turboshaft engines for helicopters, turboprop or small turbofan and turbojet engines are not regulated - these aircrafts can have a high impact on local air quality (LAQ) especially during ground operation
- There is no official and public available database for non-regulated engines

Setup

Overall experimental setup (2022 - 2024)

Experimental particle meassurement setup 2024

Fuels

- Different reduction potentials for CO and UHC
- FT-SPK shows a more significant impact on both emission components
- There were no significant changes in EI_{NOx} between the fuels used

Fig. 1: El_{CO}

Fig. 2: El_{UHC}

 Aromatic compounds (particle precoursors) and their derivatives were also reduced significantly

Fig. 3: Mass spectrograms for aromatic compounds

CPC Partikelanzahlkonzentrationen

Fig. 5: ElnumEP10

- nvPM number concentrations show the highest reduction potential for neat SAF/SPK
- Reversal of the load point-dependent emission behavior at 100% SAF/SPK (El_{numEP10} differs between GI and TO)

 El_{massEP10} is higher in TO than in GI due to higher fuel-flow and the fuel rich combustion zone of the Allison 250-C20B

 El_{massEP10} can be reduced up to 84% (TO) and 98% (GI) by using HEFA- and FT-SPK

- Reductions for El_{numEP10} and El_{massEP10} can be seen in the PNSD of the fuels used
- the GMD is changing as a function of: engine load and fuels used

Fig. 7: PNSDs

Summary & Outlook

- FT-SPK can reduce UHC- and CO-Emissions unlike HEFA-SPK this could be attributed to the length of the hydrocarbon molecules and/or to physical fuel properties (boiling curves, viscosity) and influences on atomization
- HEFA- and FT-SPK-Blends (30% and 50%) show a reduction in nvPM number and mass - However, the biggest reduction potential can be seen with neat SPK
- Using alternative fuels shifts the soot particle diameter

Universität 🚯 München