

Relating condensable reaction product formation with nanoparticle growth rates: Select monoterpene + NO₃ reactions under varying oxidizing conditions

Matti Rissanen, Shawon Barua, Linyu Gao, Rabbia Asgher, Sana Farhoudian, Siddharth Iyer, Avinash Kumar, Matthieu Riva, Bénédicte Picquet-Varrault, Miikka Dal Maso

Tampere University, Physics Unit, Tampere, Finland University of Helsinki, Chemistry Department, Helsinki, Finland CNRS, IRCELYON, Lyon, France Université Paris Est Créteil and Université Paris Cité, CNRS, LISA, Creteil, France

- Acknowledgements

*

- **RAPC group** in Tampere & Helsinki
- Funding:

Intro – interest in NO₃ is increasing

notwithstanding NO_x is going down

- Contrary to common view NO₃ can oxidize also during daytime
 - Photolysis of any vapor takes time
- Combustion emissions are going down
 - Though NO_x is kind of hanging in many places
- Monoterpenes (MT) are the main source of SOA
- Subsequently NO₃ + MT → SOA is gaining interest

Experiment – CESAM chamber in Paris Creteil

Experiment – CESAM chamber in Paris Creteil

Monoterpene + NO₃

- NO_3 by (i) N_2O_5 decomposition or (ii) $NO_2 + O_3$
- ...and subsequent photo-oxidation
- Steady-state & Batch mode

Significant differences were observed

The Experiment Steady-state analysis of Limonene + NO_3 $(N_2O_5 injection)$

- In some experiments also by NO₂ + O₃
- Leads to mainly

 O₃ chemistry with
 NO₂ termination

Also:

Batch mode analysis of Limonene + NO_3 (N_2O_5 injection)

- Batch mode gives "Absolute SOA yield"
- ...but SOA is a dynamic quantity
- Comparisons coming up!

The Experiment Steady-state analysis of Limonene + NO_3 $(N_2O_5 injection)$

- In some experiments also by NO₂ + O₃
- Leads to mainly

 O₃ chemistry with
 NO₂ termination

Steady state experiments (PSM + NO₃⁻ CIMS)

The influence of light – dimers disappear...

The influence of light - dimers disappear but monomers make up the dent!

ETH-NP2025 Rissanen – Students make prettier plots!

Conclusions

L Tampere University

- \bullet Monoterpene NO_3 oxidation leads to SOA
- We did limonene in batch vs steady-state
 - Significant differences
 - E.g. HOM dimers higher in batch mode
 - SOA is a dynamic quantity \rightarrow Steady state analysis is more realistic
- NO₃ from NO₂ + O₃ difficult
 - Results: Too much O₃, too much NO₂
- N_2O_5 is a <u>much</u> cleaner source for NO_3
- Doubly-nitrated dimers disappeared during UV-illumination
- Growth even speeded up without dimers which is a tad bit odd in considering prior research

Extra slides

Comparison of limonene and α -pinene

EXPERIMENTS MODE STEADY-STATE

Where are HOMs needed? Formation of atmospheric nanoparticles

