Deutsches Biomasseforschungszentrum gemeinnützige GmbH

Influence of electrostatic precipitators at small-scale biomass combustion systems on particle number emissions and particle size distributions Mirjam Müller, Mario König, René Bindig

28th ETH-Nanoparticles Conference 2025, June 16-19

Research Setting

- Results out of two research projects at DBFZ with the aim of emission characterization from smallscale biomass combustion systems
- Gravimetric measurements according to VDI 2066 and particle number measurements with three different types of devices (MPSS, NPET, ELPI®+).
- Before and after the three different precipitators in combination with a wood log stove, a pellet stove and a multi-fuel boiler
- Accompanied by studies on quality assurance and calibration analyses of the measuring devices with aerosol generators and comparison measurements in combustion flue gas

- WePart Untersuchung der Wirkung bestehender primärer und sekundärer Emissionsminderungstechniken an Feuerungsanlagen zur Partikelzahlminderung abhängig von Brennstoff und Feuerungstechnik (2022-2025)
- LangEFeld Langzeitmonitoring und Funktionalität von Staubabscheidern für Einzelraumfeuerungen im Feld (2022-2025)

Research Setting

Device name	Measuring principle	Particle size range					
MPSS (TROPOS, TSI)	Bipolar neutralization, classification	8.7 - 835 nm					
	according to electrical mobility, detection						
	vith condensation particle counter						
	(DMA/CPC)						
HC-NPET/NPET (TSI)	Detection with condensation particle	23 nm - 1 µm					
	counter (CPC), no size classification						
ELPI®+ (Dekati)	Size classification in cascade impactor	6 nm - 10 µm					
	after particle charging, electrical						
	detection						

SMPS = MPSS (Mobility Particle Size Spectrometer) → Official term according to CEN directive for atmospheric measurements and ACTRIS (Aerosols, Clouds, and Trace gases Research InfraStructure)

- CPC Measurement of electrical mobility diameter
- ELPI Measurement of aerodynamic diameter
- Dilution with eDiluter from Dekati/Envilyse

Comparison and calibration measurements

- Efficiency and evaluation procedure has major impact on results
 - MPSS → Plateau counting efficiency 95 %, below 20 nm
 drop in efficiency and greater measurement deviation
 - HC-NPET/NPET after maintenance counting efficiency at 69 % (HC-NPET) and 90 % (NPET)
 - Particle density important factor for evaluation of ELPI results → According to Leskinen et al. (2014)¹ particle size for wood combustion in the relevant size range at about 0.2-0.5 g/cm³
- Regular comparison and calibration measurements before and after test series are essential

nm $(1,0)^{(1,0)}$

narticle diameter in nn

6 7 8 9 1011

Comparison and calibration measurements

- Results of comparison measurements in combustion flue gas standardized to 13 vol.-% O₂
- Value output of ELPI twice as high as for MPSS → correction with density of 0.5 g/cm³
- NPET/HCNPET lowest measurement vales
- Deviation for two measuring devices of one type 20 %
- NPET shows 3-10 % lower values as MPSS

 particle numbers in the range 6-23 nm (differences of the devices in the detection > 835 nm not significant)

Measurement results without correction

Batch-No.	HC-NPET	NPET	ELPI_1	ELPI_2	MPSS_1	MPSS_2
1	1.81E+07	2.06E+07	6.22E+07	6.96E+07	2.57E+07	2.21E+07
2	1.97E+07	2.04E+07	4.93E+07	4.93E+07	2.76E+07	2.40E+07
3	1.39E+07	1.42E+07	3.53E+07	4.09E+07	2.19E+07	1.93E+07
4	1.36E+07	1.35E+07	4.32E+07	5.03E+07	2.07E+07	1.79E+07
5	1.10E+07	1.17E+07	2.72E+07	3.06E+07	2.01E+07	1.73E+07

Measurement results with correction of device Plateau efficiency and particle density (ELPI), Efficiency loss below 20 nm and diffusion losses in sampling lines not corrected

Batch-No.	HC-NPET	NPET	ELPI_1	ELPI_2	MPSS_1	MPSS_2
1	2.62E+07	2.28E+07	3.11E+07	3.48E+07	2.68E+07	2.35E+07
2	2.86E+07	2.26E+07	2.46E+07	2.47E+07	2.88E+07	2.55E+07
3	2.02E+07	1.58E+07	1.77E+07	2.05E+07	2.28E+07	2.05E+07
4	1.97E+07	1.50E+07	2.16E+07	2.52E+07	2.15E+07	1.90E+07
5	1.60E+07	1.30E+07	1.36E+07	1.53E+07	2.09E+07	1.84E+07

Emission reduction by precipitators

Wood log stove

Multifuel boiler

© DBFZ

Pellet boiler

© DBFZ

© DBFZ

© Exodraft

Emission reduction by precipitators

•

Wood log stove

- StoveWamsler and Exodraft precipitator
- Beech wood as fuel
- Experiment setting based on DIN SPEC 33999
- Parallel gravimetric measurement and with all particle number measurement devices

Multifuel boiler

- Ökotherm CO UA-E AP 10 with field precipitator type 1
- Fuel wood chips
- Parallel gravimetric
 measurement
 - Alternating measurement by particle number measurement devices before and after the precpitator

Pellet boiler

- ETA Heiztechnik GmbH (type: PelletsUnit 15 kW) with precipitator by Oeko-Solve AG (type: OS-CTRL)
- Wood pellets as fuel
 - Parallel gravimetric measurement
- Alternating measurement by particle number measurement devices before and after the precpitator

Particle number reduction by precipitators

- Dummy/Blind seperation efficiency
 - Minor gravimetric PM reduction by precipitator switched off (boilers) or dummy precipitator section (wood log stove) → wood log stove by 2 %, multifuel boiler by 10 % and pellet stove by 0 % (dependent on design of precipitator)
 - Significant particle number reduction for wood log stove by 30-62 %, multifuel boiler by 48-56 % and pellet stove by 61-66 %

Particle number reduction by precipitators

- Electrostatic seperation efficiency Wood log stove
 - Data corrected with blind efficiency of 2 % for grav. values and 30 % for particle number and standardized to STP and 13 vol.-% O_2
 - Raw particle number concentrations and separation efficiency

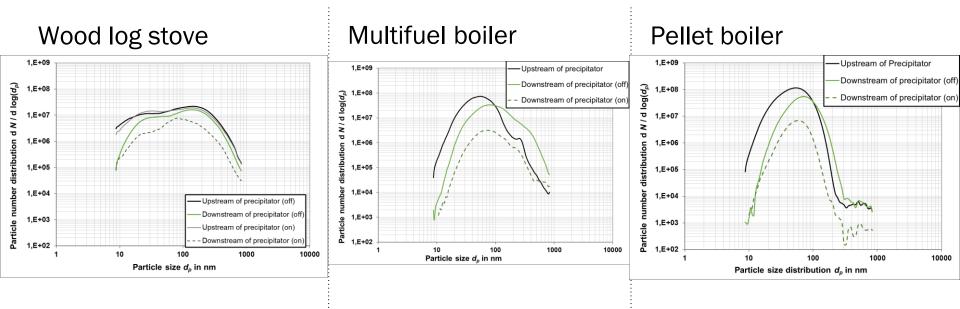
Combustion	Temperature	HC-NPET	ELPI	MPSS	Grav.	ΔΝΡΕΤ	ΔΕLΡΙ	ΔMPSS	Grav.
			#		mg/m³		Ç	%	
Good	Low	1.4E+07	4.8E+07	2.2E+07	42	47	48	51	54
Good	High	1.7E+07	6.2E+07	4.1E+07	70	56	56	51	53
Poor	Low	2.4E+07	1.1E+08	3.4E+07	233	42	46	43	42
Poor	High	5.6E+07	2.7E+08	2.5E+08	645	44	43	38	56
Poor	Low	1.8E+07	6.7E+07	2.7E+07	127	45	43	44	51

Separation efficiencies comparable for all particle number measuring devices

Particle number reduction by precipitators

Electrostatic seperation efficiency

• Multifuel boiler (raw concentration and efficiency corrected with blind efficiency of 10 % for grav. values and 52 % for particle number, during continuous operation)

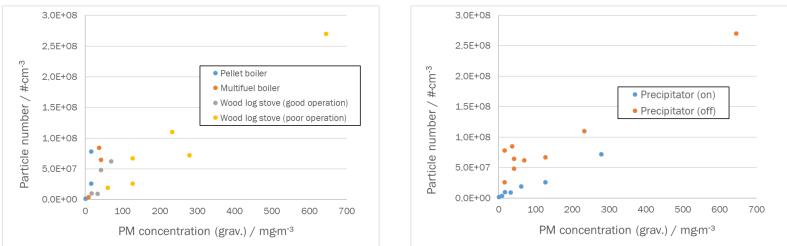

HC-NPET	ELPI	MPSS	Grav.	ΔΝΡΕΤ	ΔΕLΡΙ	ΔMPSS	Grav.
	# mg/m ³				9	6	
4.7E+07	5.1E+07	4.1E+07	47	46	43	44	53

• Pellet Boiler (raw concentration and efficiency corrected with blind efficiency of 63 % for particle number, during continuous operation)

HC-NPET	ELPI	MPSS	Grav.	ΔΝΡΕΤ	ΔΕLΡΙ	ΔMPSS	Grav.
	# mg/m ³				ç	6	
5.2E+07	7.8E+07	6.3E+07	16	35	35	32	94

Change of the particle size distribution

Change of the particle size distribution



- Change of particle size distribution
 - Shift in particle size distribution during flow through the electrostatic precipitator (without electrostatic charging) particles smaller than 100 nm decrease; particles larger than 100 nm increase in size → agglomeration, coagulation
 - Particles < 100 nm are reduced by approx. 1-2 orders of magnitude by electrostatic precipitators
 - Partially increase of particles > 600 nm by electrostatic (visible by ELPI measurements)
 → promotion of agglomeration or also particle discharge possible

Particle number concentration vs. gravimetric measurement

- General trend increase of grav. concentration also increase of particle number
- Partly large differences of the change

Differences in particle size and type during good an poor combustion \rightarrow more data and analysis with conclusions on particle composition and size distribution required

Conclusion / Further investigations

- Significant reduction of ultrafine particles observed via electrostatic precipitators
- Reduction of particles passing the precipitators not solely due to electrostatic separation, but also agglomeration, coagulation (condensation effects also possible)
- Influences on the results
 - Precipitator design and size
 - Particle concentration and flue gas composition
- Framework conditions (measurement setup, evaluation procedure) crucial for results →
 comprehensible results for separation efficiency for different used measurement devices
- Determination of defined particle number concentration for evaluation of combustion quality is more challenging → evaluation solely based on particle number difficult (combination with grav. measurement necessary)
- Further investigations Comparison of results with data from already available mobile devices for particle number measurement

Deutsches Biomasseforschungszentrum

Smart Bioenergy – Innovationen für eine nachhaltige Zukunft

Kontakt: Mirjam Müller <u>Mirjam.Mueller@dbfz.de</u>

Working Group Small Plant Technology, Department Thermo-chemical conversion DBFZ Deutsches Biomasseforschungszentrum gemeinnützige GmbH Torgauer Straße 116 D-04347 Leipzig Tel.: +49 (0)341 2434-112 E-Mail: info@dbfz.de www.dbfz.de

Fotos: DBFZ, Jan Gutzeit, DREWAG/Peter Schubert (Titelfolie, rechts), Pixabay / CCO Public Domain