

The chemistry and physics of tyre wear

p-Xylene

Pentadiene

P

 $C_{10}H_{16}$

Nick Molden Founder & CEO, Emissions Analytics Honorary Senior Research Fellow, Imperial College London

19 June 2025

C₉H₈ Cycloheptatriere Benzene C₁₈H₁₇D_{5N2} C₆H₆ Methylstyrene Naphthalene

Setting the scene

- We study the holistic environmental impact of vehicles on the environment
- Through an on-going programme of independent tests
- Working with industry, authorities and academics
- To reconcile transportation with a sustainable environment

The issue

The tyre problem

- Complex chemistry
- Complex physics
- Complex health effects
- Complex environmental effects
- **Complex politics**
- Complex economics
- COMPLEX EVERYTHING, plus...
- Significant information asymmetries
- Mixed regulatory track record is about to collide with this problem

Why tyres now?

- Dramatically reduced tailpipe emissions
 - Research efforts and breakthroughs
 - Heavier and battery electric vehicles
 - Approximately 25% increase

5

Critical Mass

The One Thing You Need to Know About Green Cars

Felix Leach and Nick Molden

- 6 million tonnes of tyre wear globally per year
- 1-2 billion end-of-life tyres per year
- 7 thousand tonnes of 6PPD in the wear

Multiple vectors

brake and tyre

Experimental approach

Test programme

- 501 new tyres tested
- Split between US and Europe
- Sourced from retail and wholesale
- On-road mass loss
- Real-time size distribution
- Untargeted Pyrolysis-GCxGC-TOF-MS analysis undertaken of tread
- Untargeted TD-GCxGC-TOF-MS from offgassing chamber of whole tyre
- Full organic compound identification and quantification

Market tyres

Key observations

- Tyres are complex and heterogeneous for...
- Wear and chemical composition
- 410 organic compounds on average in a tyre
- 15,916 unique compounds (post-pyrolysis) across 501 tyres
- 6PPD in 100% of tyres mean concentration 1.2 μg/mg, max 5.7 μg/mg (x4.8)
- Mass wear varies mean 99 mg/km, max 246 mg/km (x2.5)
- More variation in the chemistry than the physics?
- > Deliberately formulated, not random variation

Manufacturer rankings – EU car tyres

- Yokohama is a major manufacturer using less 6PPD
- Established European and US manufacturers clustering in 1,500-2,500 ng/mg range
- Large variability points towards using a limit value

US car tyres contain less 6PPD than Europe

- Similarly lower 6PPD for pick-ups and vans
- But similar concentrations for heavy-duty vehicles
- 6PPD concentrations in the US are similar whatever the tyre application

•	ng/mg	Light	Medium	Heavy
	USA	701	743	775
	Europe	1,541	1,243	795
	Difference: US vs Europe	(55%)	(40%)	(3%)
		• • •		

Physics

What are tyre particles? Definitions and artefacts...

Dynamometer

Grating

Cryomilling

CONFIDENTIAL © Emissions Analytics 2025

On-vehicle sampling – principles

- Universal fitment across vehicles
- Fits to any and all wheels on a vehicle
- No vehicle modification required
- Articulates as the vehicle steers
- Safe and road-legal
- Can be coupled with any detector
- And collecting plates/receptacle
- Patent-pending
- Mass, number and physical collection

Sampling challenges

- Instantaneous particle concentration over time
- By size class
- By collection location
- Location dependency

brake and tyres

Transit distance – Colorado Rocky Mountains

- Wind-blown particles on dirty, high-elevation (2,865-3,690 m) snow
- Likely to contribute to melting of snow and ice as well as to warming the atmosphere

Results From Organic Compound, Spectral Reflectance, and Total Organic Carbon Analyses

Site	WY	OC number	OC sum%	Fluorene	1,3-Pentadiene	2,4-Dimethylstyrene	Biphenyl	Rtot	TOC	particles ated to be
McClure Pass	14	396	53	64.2	440.0	1.6	11.4	0.3601	8.35	5–1,965 1
McClure Pass	16	369	49	77.9	269.3	14.6	11.9	0.3378	20.5	radiation surfaces as
Wolf Creek Pass	15	402	47	54.6	0	0	15.2	0.3110	13.58	
Wolf Creek Pass	16	377	48	29.9	0	8.5	9.3	0.2881	22.48	
Berthoud Pass	16	386	56	0.2	1223.1	29.0	14.1	0.3282	12.44	xe found i
Grand Mesa	16	405	49	49.3	1.2	1.3	12.0	0.3746	8.52	е.

Note. WY, water year of sample collection. OC Number, numbers of specific organic compounds in a snow sample determined by the GCxGC method that are in the road-tire-composition database (Molden, 2023a, 2023b); OC SUM%, the proportion of the number of organic compounds detected in a snow sample also found in the stein, road-tire-composition database to the number of all organic compounds in that sample; concentrations of the four listed organic compounds in ng mg⁻¹; Rtot, average spectral reflectance across 0.37–2.5 µm wavelengths; TOC, total organic carbon in weight %.

> Citation: Reynolds, R. L., Molden, N., Kokalv, R. F., Lowers, H., Breit, G. N., Goldstein, H. L., et al. (2024). Microplastic and associated black particles from road-tire

JGR Atmospheres

)21)

RESEARCH ARTICLE 10.1029/2024JD041116

Special Collection: Dust and dust storms: From physical processes to human health, safety, and welfare

· Light absorbing particles, as blackened

microplastic matter from road-tire

wear occur in snow of the Colorado

Key Points:

Jeff Derry⁵

Richard L. Reynolds¹, Nick Molden^{2,3}, Raymond F. Kokaly⁴, Heather Lowers⁴, George N. Breit⁴ , Harland L. Goldstein¹, Elizabeth K. Williams¹, Corey R. Lawrence¹, and ¹U.S. Geological Survey, Geosciences and Environmental Change Science Center, Denver, CO, USA, ²Department of Civil

and Environmental Engineering, Imperial College, London, UK, ³Emissions Analytics LLC, Redondo Beach, CA, USA, ⁴U.S. Geological Survey, Geology, Geophysics, Geochemistry Science Center, Denver, CO, USA, ⁵Center for Snow and Avalanche Studies, Silverton, CO, USA

Abstract The environmental effects of airborne micro- and nano-size plastic particles are poorly understood. Microscopy and chemical analyses of atmospherically deposited particles on snow surfaces at high elevation (2,865-3,690 m) in the Upper Colorado River basin (UCRB; Colorado Rocky Mountains) revealed the presence of black substances intimately associated with microplastic fibers, particles interpreted to have originated as tire matter. Identical and similar particles occur in shredded tires and road-surface samples. The substance responsible for the black color of all tires is carbon black, a graphitic light-absorbing tire additive produced by hydrocarbon combustion that homogeneously permeates the mixture of tire polymers and other additives. Such black tire matter may thus exert radiative effects closely similar to those of black carbon. The presence in snow of many organic compound types common to tires, measured by two-dimensional gas chromatography, suggests that atmospherically deposited black road-tire-wear matter is among the lightabsorbing particulates that advance the onset and rate of snow melt in the UCRB. The mass of road-tire-wear particles shed from vehicles may be estimated by multiplying measured amounts of eroded tire-per-distance traveled by vehicular distances. Under a combination of measurements and assumptions about the amounts and radiative properties of atmospheric tire-wear particles, the radiative effects of these particles might add about 10%-30% to those effects from black carbon, an estimate ripe for revision. On regional and global scales, the amounts and effects of emitted and deposited tire-wear matter likely vary by factors of geographic source, transport pathway, and depositional setting.

Chemistry – particles

Reverse-engineering the tyre

- Two-dimensional gas chromatography with mass spectrometry
- INSIGHT flow modulator from SepSolve Analytical for separation
- BENCH-TOF time-of flight mass spectrometer
- Multi-stage pyrolysis method

Complexities of tyre analysis

Organic composition

- 1. Naturally-derived chemicals
- 2. Synthetic polymer breakdown products
- 3. PAHs
- 4. Vulcanisation accelerators
- 5. Terpenoids from natural rubber
- 6. Benzothiazoles
- 7. PPD compounds

Functional group		Average concentration μ g/mg
Allenes		0.105
Acvclic allenes	(1)	0.105
Benzenoids		22.856
Acenaphthylenes	\bigcirc	0.084
Anthracenes	(3)	0.130
Benzene and substituted derivatives	\bigcirc	19.956
Huorenes	Ŀ	0.486
Naphthalenes	\bigcirc	1.043
Phenalenes	(3)	0.055
Phenanthrenes and derivatives		0.281
Pyrenes		0.821
Hydrocarbons		17.107
Saturated hydrocarbons		0.002
Unsaturated hydrocarbons		17.105
Lipids and lipid-like molecules		22.597
Fatty Acyls	(4) (5)	1.927
Prenol lipids	0 e	20.670
Organic acids and derivatives		0.266
Carboxylic acids and derivatives		0.266
Organic nitrogen compounds		1.872
Organonitrogen compounds		1.872
Organoheterocyclic compounds		3.457
Azolidines		0.940
Benzimidazoles		0.001
Benzothiazoles	(6)	0.918
Benzotriazoles		0.002
Oxepanes		1.410
Quinolines and derivatives	(7)	0.169
Triazines		0.017
Organometallic compounds		0.034
Organometalloid compounds		0.034

Known tyre additives

• 28 substances identified so far...

ng/mg	Number	Average concentration per tyre	Maximum concentration of any one compound		
Antioxidant/antiozonant/he at protectant	12	2,567	5,717		
Vulcanisation process	7	1,087	1,875		
Silica or silane	4	34	18		
Other	5	1,698	5,503		
Total	28	5,386	13,113		

Breakdown products

• Compounds derived from...

ng/mg	Number	Average concentration per tyre	Maximum concentration of any one compound
Natural rubber	10	32,008	96,707
Styrene-butadiene rubber	27	26,940	42,333
Extender oil	23	2,529	10,916
Other polymers	6	1,230	11,036
Antioxidants	5	30	112
Vulcanisation accelerator	4	171	652
Total	75	62,908	96,707

24

...And the opposite ... forever chemicals

- Potentially infinite set of fluorinated compounds
- >10,000 codified
- For example, Ethanethioic acid, trifluoro-, S-ethyl ester
- $C_4H_5F_3OS$
- On the US EPA PFAS list

Insights from reverse-engineering

Headline	What we see in the numbers	Likely formulation reason
OE1 has the most PAHs	Highest mean aromatics+PAHs of any major make, ~30% above OE5 and ~60% above OE2.	Heavy use of aromatic extender oils and carbon black to hit OE1's high-speed, low-deformation targets.
OE2 skews towards aliphatics	Some of the lowest PAH totals.	Use of high-silica + aliphatic process oils to cut rolling resistance within EU PAH limits.
OE3 shows halogens	Only major brand with clear presence of halogens.	Brominated or chlorinated flame-retardant traces – potentially manufacturing process contamination
OE4 is chemically "middle-of- the-road"	Moderate across all organic groups; PAHs ~15% below OE1 and 5-10% above OE5.	OE4's silica-rich tread compounds reduce aromatic oils but keep a sizable hydrocarbon backbone for wear resistance.
OE5 vs OE6	Similar PAH levels but OE5 carries ~14% more aliphatics.	OE5 tends to favour higher molecular-weight softeners for grip.
BTAS brake and tyres analysis system		CONFIDENTIAL © Emissions Analytics 2025

Chemistry - gases

Sampling system

- Accommodates whole tyre
- Clean, steel internal surface
- Insulated chamber
- Fan for even heat distribution
 - Lamps as heat source
 - Thermal desorption tube connection

Test results

- 100s of VOCs released in each chamber exposure
- Background VOCs in chamber were measured and subtracted from VOCs emitted from tyres
- Recurrent species in all samples

	Aniline	Methyl Isobutyl Ketone	Benzo- thiazole	Methyl- cyclo- hexane	Cyclo- hexane	1,3- dimethyl- benzene	<i>n</i> - hexane	Toluene	2-methyl-2- Propan- amine	<i>p</i> - xylene
New Tyre	1.73	3.01	1.23	-	0.33	-	0.17	1.00	1.59	2.79
Old Tyre	0.15	2.11	0.69	0.12	0.01	0.86	0.19	0.91	-	0.29
Small Tyre	1.92	1.51	0.99	1.45	0.67	0.84	0.54	0.64	0.35	0.01
Large Tyre	2.41	1.59	1.08	0.91	0.65	0.59	0.45	0.47	-	0.01

Box model results for Los Angeles (1)

Assumptions

Boundary layer height = 1 km Air is completely well-mixed within the boundary layer Temperature = 25 °C (mean temperature in June) Number of vehicles = 2.3 million (LA city) $[OH] = 5 \times 10^6$ molecules cm⁻³ (midday peak in LA) Ozone (O₃) and Secondary Organic Aerosol (SOA) formation potentials from literature

Box model results for Los Angeles (2)

Compound	CAS #	molar mass / g/mo 💌 🔜	chamber emission rate (ER) / mol 💌	LA City ER / molec cm-2 s-	VOC m 👻	O3 rate 💌	03 vmr / p 🛒	Y SOA yiel 🗐	SOA / ug/ 👻
p-Xylene	106-42-3	106.17	8.89E+19	1.05E+12	3.36E+07	5.84	76.95	0.123	3.18E+00
Benzene, 1,3-dimethyl-	108-38-3	106.17	4.20E+19	4.95E+11	9.82E+06	9.75	37.52	0.0865	6.53E-01
m-xylene	108-38-3	106.17	4.20E+19	4.95E+11	9.82E+06	9.75	37.52	0.0865	6.53E-01
Toluene	108-88-3	92.141	4.12E+19	4.86E+11	3.44E+07	4	53.86	0.03	7.93E-01
n-decane	124-18-5	142.281	1.00E+19	1.18E+11	6.46E+06	0.68	1.72	0.055	2.73E-01
Benzene	71-43-2	78.111	9.53E+18	1.12E+11	3.12E+07	0.72	8.80	0.02	4.80E-01
n-nonane	111-84-2	128.261	5.20E+18	6.14E+10	3.40E+06	0.78	1.04	0.03	7.85E-02
n-tetradecane	629-59-4	198.391	4.91E+18	5.79E+10	2.77E+06	0.51	0.55	0.52	1.11E+00
n-undecane	1120-21-4	156.31	4.60E+18	5.43E+10	2.84E+06	0.61	0.68	0.08	1.75E-01
1, 2, 4-Trimethylbenzene	95-63-6	120.19	4.22E+18	4.98E+10	7.95E+05	8.87	2.76	0.05	3.06E-02
Naphthalene	91-20-3	128.17	4.00E+18	4.72E+10	1.07E+06	3.34	1.40	0.473	3.90E-01
n-tridecane	629-50-5	184.36	3.95E+18	4.66E+10	3.23E+06	0.53	0.67	0.5	1.24E+00
Ethyltoluene	622-96-8	120.19	3.53E+18	4.16E+10	1.82E+06	4.44	3.16	0.035	4.89E-02
Ethylbenzene	100-41-4	106.17	2.03E+18	2.40E+10	1.57E+06	3.04	1.87	0.03	3.62E-02
o-xylene	95-47-6	106.17	9.02E+17	1.06E+10	3.59E+05	7.64	1.07	0.123	3.39E-02
n-Propylbenzene	103-65-1	120.19	6.75E+17	7.97E+09	7.13E+05	2.03	0.57	0.05	2.74E-02
Methylnaphthalene	90-12-0	: 142.2.	6.25E+17	7.38E+09	1.11E+05	3.06	0.13	0.473	4.03E-02

Results

 $[O_3] = 322 \text{ ppb} (cf. \text{max in summer } 2024 = ~50 \text{ ppb})$ SOA = 7.6 µg m⁻³ (cf. max in 2024 = ~30 µg m⁻³)

Conclusions

While most likely an overestimate due to model assumptions, these results indicate that tyre VOC emissions may represent a non-negligible (and so far, overlooked) source of secondary pollutants in urban environments

Conclusion

Key messages

- It's complex
- It's not going away
- There is much we don't understand
- But knowledge is progressing fast
- But we need to make sure we ask the right questions

Further insights

EOU

Tyre Emissions Research Consortium

Tyre Emissions Research Consortium

A group committed to understanding the environmental effects of tyre emisisons through independent research

https://www.linkedin.com/company/tyre-emissions-research-consortium

Tyre chemical fingerprint database

ě	E M A N	NALYTICS	Home	Vehicles -	Analysis	; - A	Admin -	Search	by ID	4	a		, i	lello Nick Molden Log out							
	Home	Tires / Tire Rar	king																		
		Budget			Mid-	market				Premium		1			CalSA	FER					
	Alkanes	Aromatics	Acids										For more information about this target list, visit https://calsafer.dtsc.ca.gov.								
		Eu	rope				A	sia							*	Functional	Tires found 🝦	Average concentration	Maximum concentration		
	#	Manufacturer	Lonc	MOM YOY	r #	Ma	anutacturer	µg/m	g Mom	YOY	#	ма	793-24-8	6PPD N(1,3-dimethylbutyl)-N'-phenyl-p-phenylenedia	m C ₁₈ H ₂₄ N ₂	Aromatics	# (% of tyres)	µg/mg 0.814	µg/mg 3.832		
	0	Avon	1683		•	Br	idgestone	158	83		0	Kell	106-42-3	p-xylene	C ₈ H ₁₀	Aromatics	274 (97.5%)	9.323	31.148		
	2	Barum"	1686		•	То	yo"	18	11			Mai	108-88-3	Toluene	C ₇ H ₈	Aromatics	267 (95.0%)	7.992	42.333		
	3	Pirelli	1872) JK	C Tyre	184	47		2	God	122-39-4	Diphenylamine	C ₁₂ H ₁₁ N	Aromatics	230 (81.9%)	0.088	0.758		
													71-43-2	Benzene	C ₆ H ₆	Aromatics	226 (80.4%)	2.919	12.840		
													100-40-3	4-VCH 4-Vinylcyclohexene	C ₈ H ₁₂	Aromatics	221 (78.6%)	3.355	23.166		
													129-00-0	Pyrene	C ₁₆ H ₁₀	Aromatics	215 (76.5%)	0.123	0.661		

106-87-6

4-Vinyl-1-cyclohexene diepoxide

C8H12O2

Aromatics

- Substances of concern tracking
- For benchmarking, research and development

213 (75.8%)

1.666

16.727

Thank you.

Nick Molden Chief Executive Officer nick@emissionsanalytics.com +44 (0)20 7193 0489

ASSURED | INDEPENDENT | RESPONSIVE

Assured

Emissions testing in real-world conditions brings challenges that experience anticipates and expertise overcomes. We deliver.

Independent

Objectivity and candour are the driving forces in all our work, so you know the facts.

Responsive

We're fast on our feet so we can conduct emissions testing when and where we're

needed.

