28.ETH-Nanoparticle Conference Zürich, June 2025

BENEFIT / COST of Retrofitting Gasoline Vehicles with Particle Filters

Andreas C.R. Mayer

Diesel Particle Filters the interdisciplinary VERT Research Network

1994 developped for tunneling NEAT2000 some hundrets DPF in tunnel2002-10 Swiss Construction 25'000

2011 EU adopts for Diesel, 2017 Petrol 2018 China, 2020 India today > 300 Millionen worldwide

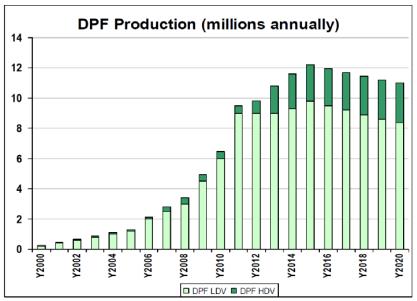
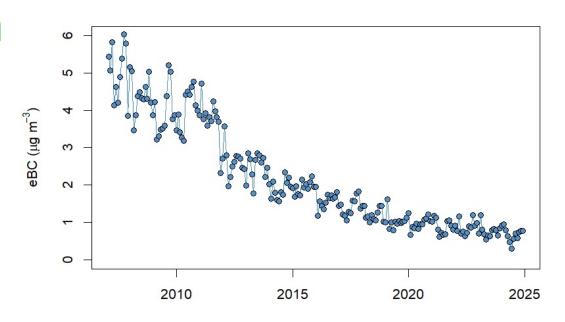
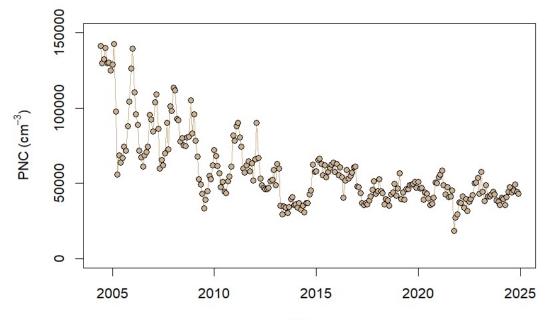




Fig. 6 DPF-Production annually for LDV and HDV - USA and Europe

10 Million premature death annually due to combusion particles = 10 x Covid Thanks to Particle Filters > 2 Mio premature death less annually UFP-Reduction at Härkingen motorway crossing reflects DPF & GPF

Source: Chr.Hüglin, EMPA

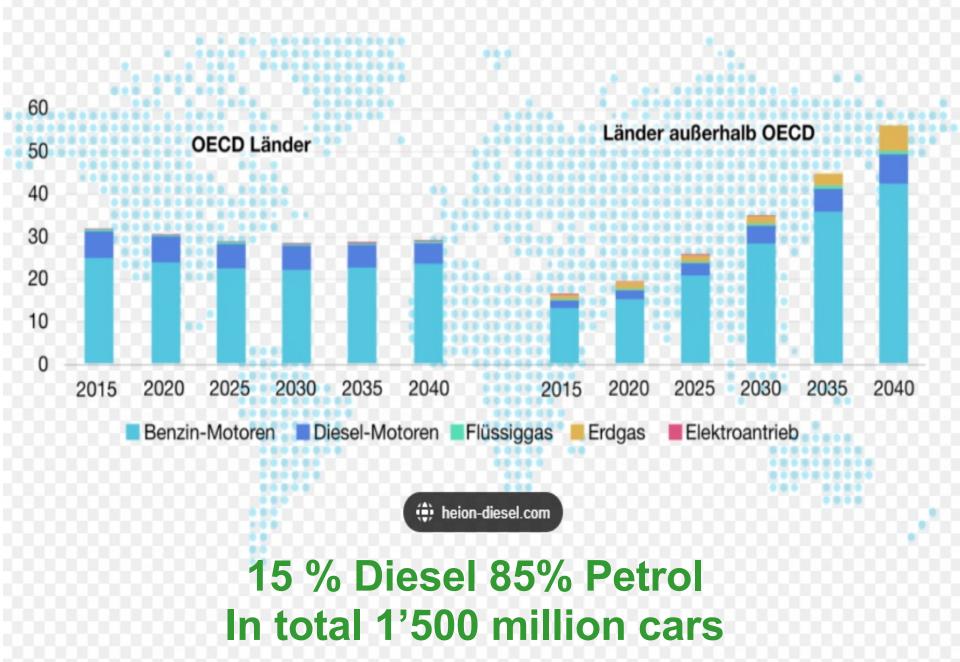
Year

Benefit/Cost of DPF Implementation for Diesel Engines

B/C = 2.9 Switzerland 2003 for Retrofit of Constr.Machines

B/C = 13 US-EPA 2010 to justify «Diesel Emiss. Reduct. Act»

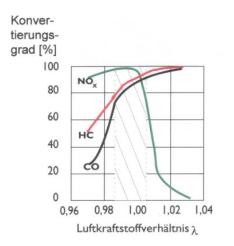
B/C = 24 EU-TSAP Report (Them. Strategy on Air Poll.) 2011


B/C = 33 IFEU-Study 2009 für DPF bei Baumaschinen

B/C = 30 US-EPA 2019 as Result of DERA

But what about Petrol Engines ?

Petrol Engines may emit as many PN as Diesels but less PM We believe that the risk is given by each single particle so by the number and not by the individual nor the commulative mass But classic Epidemiology believes in cummulative mass PM This is our Dilemma

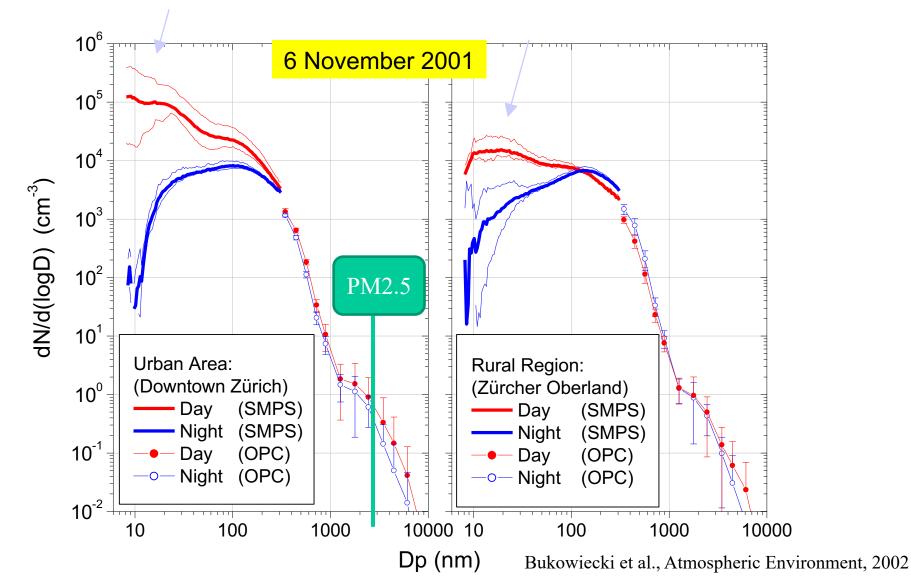

Population Diesel versus Petrol

Breakthrough with TWC for Gases Particles not even mentioned in US-CAA

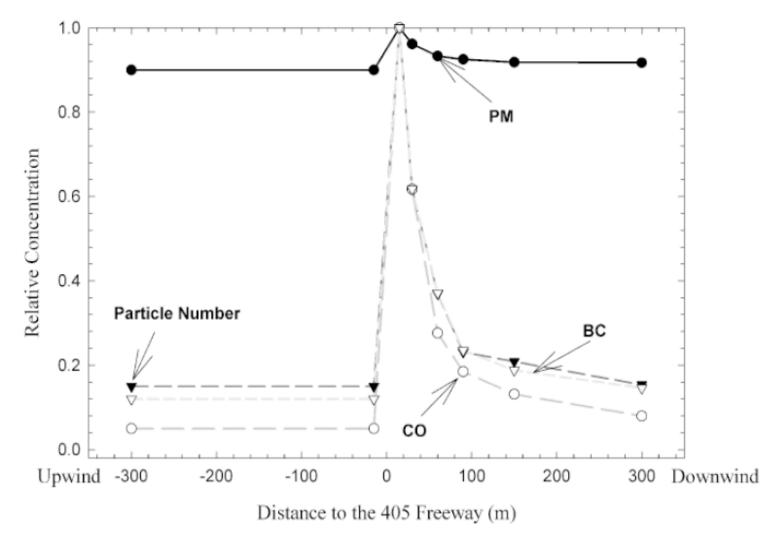
Carl. D. Keith (links) und John J. Mooney anlässlich der Verleihung der National Medal of Technology and Innovation (2003)

- 1978 John J.Mooney at Engelhard NJ co-invented the Tree-Way Catalyst
- only possible since Bosch had just invented the Lamba-Sensor and Volvo hat developed an electronic controlled injection petrol engine
- A groundbreaking development now state of the art, but could only be introduced with lead-free fuel
- Emission of UFP was not even discussed by the inventors and the TWC was open for UFP to pass

Foto tomada el 20 de abril de 2006 a las 8:30 a.m. (smog fotoquímico)



All Megacities have the same pollution problem due to petrol traffic related particles

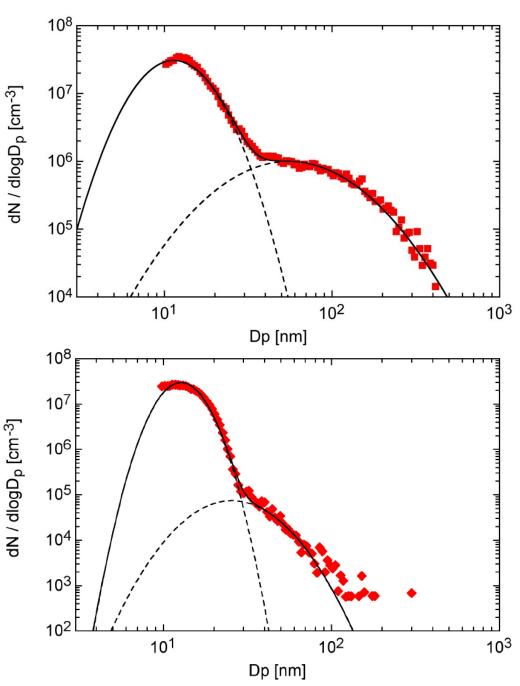


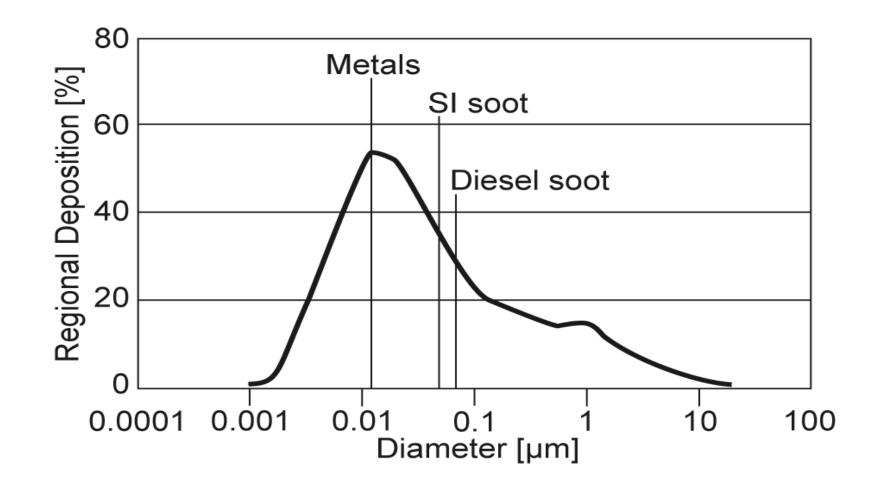
They believe to have a PM2.5 problem, but the particles are < 60 nm

Aerosol Number/Size – Distribution City (Zürich) and Coutry (Zürcher Oberland)

PN reflects the traffic effect, not PM2.5

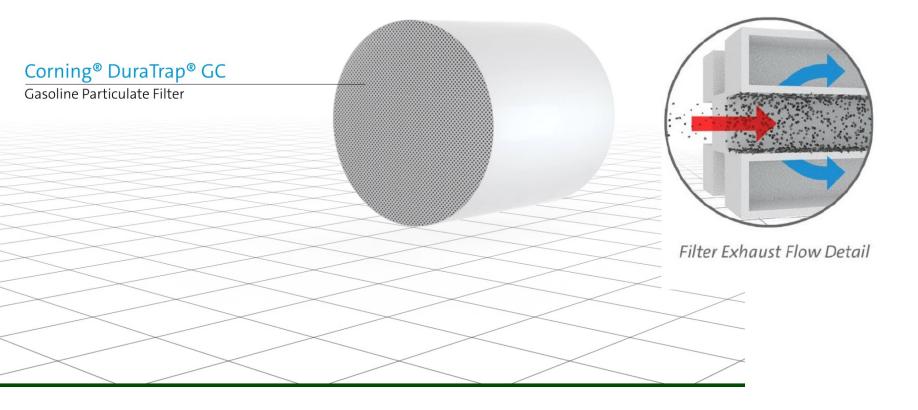
Source: Hinds, ETH-NPC 2010

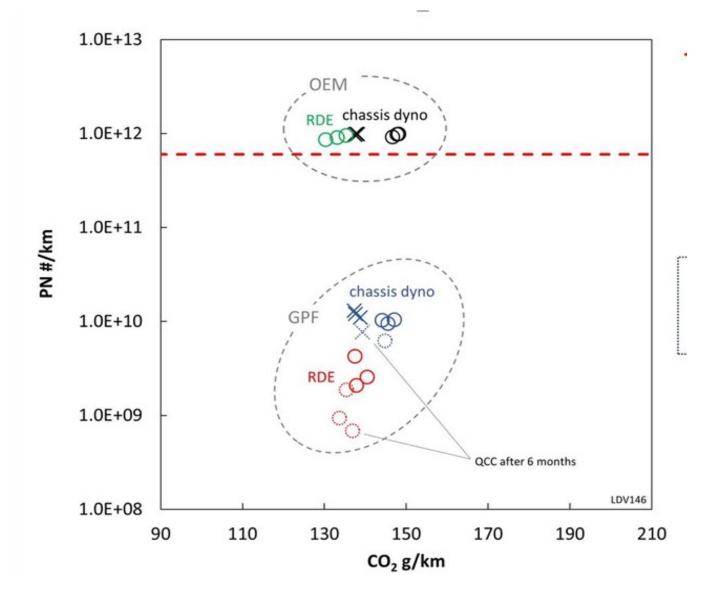

Particle Emission of ICE


Diesel

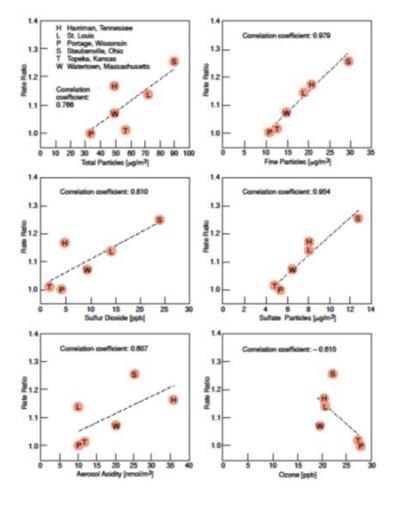
Russpeak: 80 nm; 10⁶ Aschepeak: 10 nm; 10⁷

Petrol

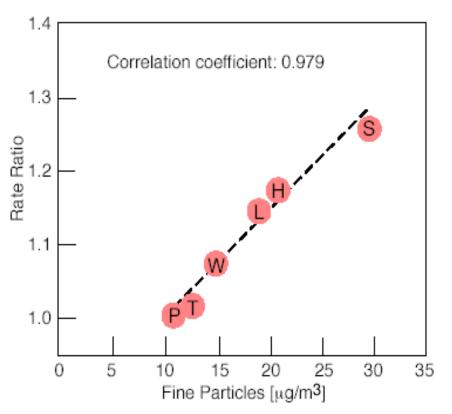

Russpeak: 40 nm; 10⁵ Aschepeak: 10 nm; 10⁷



Deposition of UFP in the alveolar region the Lung is an open door for ultrafine particles


Ceramic Wall Flow Filter

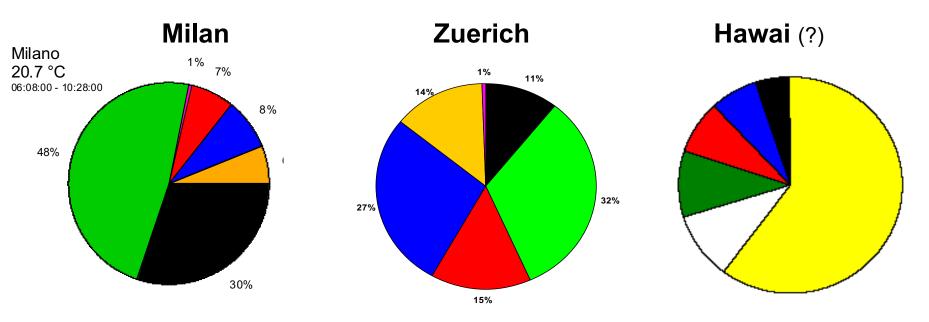
Newest Generation GPF by Corning


Quantification of Health Impact of PM

6-Cities-Study USA 1978-93 15'000 cases

Source: Dockery NEJM 1993

- H Harriman, Tennessee
- St. Louis
- P Portage, Wisconsin S Steubenville, Ohio
- T Topeka, Kansas
- W Watertown, Massachusetts



The classic Dose-Effect Factor with PM 2.5 But what is PM 2.5 ?

10 millions of premature deaths due to traffic

VHO region	Year	Population ($\times 10^6$)	Mortality attributable to air pollution (deaths $ imes 10^3$)							
					03	Total				
			ALRI < 5 yr	IHD ≥ 30 yr	CEV≥ 30 yr	COPD ≥ 30 yr	LC≥ 30 yr	COPD≥30	yı	
frica	2010	809	90	55	77	11	2	2	237	
	2050	1,807	158	185	262	38	5	12	660	
in .		930	0	44	8	4	7	5	68	
a T	alionald	91	0 56	75 115	15 86	7 12	11 5	11 12	119 286	
	elieveld,	02 21 67 86 62	66	321	246	37	13	40	723	
		67	1	239	95	13	27	40	381	
۳ M	ainz 2018	86	1	307	156	18	37	11	530	
		62	64	327	250	124	15	82	862	
	2050	2,332	104	865	807	419	48	227	2,470	
Vestern Pacific	2010	1,812	19	299	794	209	107	35	1,463	
	2050	1,861	16	413	1,120	309	155	57	2,070	
Vorld	2010	6,783	230	1,079	1,311	374	161	142	3,297	
	2050	9,098	346	2,166	2,604	828	270	358	6,572	
GEOS-Chem spatial grid		Total deaths	Population-weighted annual mean PM _{2.5} concentration, μg m ⁻³			Mean attributable	Deaths attr		GEMM function deaths attributab	
		>14 years	PM _{2.5} from PM _{2.5} without		Estimated PM _{2.5}	fraction of	fossil-fuel related PM2.5, in thousands		to fossil-fuel relate	
resolution ^a	Region ^b	old, in thousands	all emission sources	fossil fuel	from fossil fuel, %	deaths, % (95% CI) ^d	(95% CI) ^c		PM _{2.5} , in thousan (95% CI) ^e	
	Central Am	erica 1.148	10.06	3.03	7.03 (69.9)	8.2 (4.5-11.6)	04 (52			
								2-1331	80 (62-98)	
				5.05	7.05 (09.9)	8.2 (4.3-11.0)	94 (52	2-133)	80 (62-98)	
S	chwartz	2,705	11.81	2.15	9.66 (81.8)	13.1 (7.8-18.1)	355 (21	,	80 (62-98) 305 (233-375)	
S	chwartz,	2,705 250	11.81 12.01					2-490)		
-		250		2.15	9.66 (81.8)	13.1 (7.8-18.1)	355 (21	12-490) 0-47)	305 (233-375)	
-	chwartz, vard 202	250	12.01	2.15 1.76	9.66 (81.8) 10.25 (85.4)	13.1 (7.8-18.1) 13.6 (8.0-18.7)	355 (21 34 (20	12-490) 0-47) 07-263)	305 (233-375) 28 (22-35)	
-	Eastern A	23 ^{2,389} 8,626	12.01 8.66	2.15 1.76 3.02	9.66 (81.8) 10.25 (85.4) 5.65 (65.2)	13.1 (7.8-18.1) 13.6 (8.0-18.7) 7.8 (4.5-11.0)	355 (21 34 (20 187 (10	2-490) 0-47) 07-263) 06-1,952)	305 (233-375) 28 (22-35) 159 (121-195)	
Har	vard 202	23 2,389 8,626 sia & 25,468 sia & 1,456	12.01 8.66 19.22	2.15 1.76 3.02 4.68	9.66 (81.8) 10.25 (85.4) 5.65 (65.2) 14.54 (75.7)	13.1 (7.8-18.1) 13.6 (8.0-18.7) 7.8 (4.5-11.0) 16.8 (10.4-22.6)	355 (21 34 (20 187 (10 1,447 (89	12-490) 0-47) 17-263) 06-1,952) 150-13,478)	305 (233-375) 28 (22-35) 159 (121-195) 1,033 (798-1,254	
Han	Asia Eastern A Western Asia	23 2,389 8,626 sia & 25,468 sia & 1,456	12.01 8.66 19.22 51.72	2.15 1.76 3.02 4.68 8.68	9.66 (81.8) 10.25 (85.4) 5.65 (65.2) 14.54 (75.7) 43.05 (83.2)	13.1 (7.8-18.1) 13.6 (8.0-18.7) 7.8 (4.5-11.0) 16.8 (10.4-22.6) 30.7 (-189.1-52.9)	355 (21 34 (20 187 (10 1,447 (89 7,821 (-48,1	12-490) 0-47) 17-263) 16-1,952) 150-13,478) 1-144)	305 (233-375) 28 (22-35) 159 (121-195) 1,033 (798-1,254 4,945 (3,943-5,82	
Fine Coarse	Asia Kestem Astern Aste	23 2,389 8,626 sia & 25,468 sia & 1,456 5,274	12.01 8.66 19.22 51.72 26.95	2.15 1.76 3.02 4.68 8.68 20.73	9.66 (81.8) 10.25 (85.4) 5.65 (65.2) 14.54 (75.7) 43.05 (83.2) 6.22 (23.1)	13.1 (7.8-18.1) 13.6 (8.0-18.7) 7.8 (4.5-11.0) 16.8 (10.4-22.6) 30.7 (-189.1-52.9) 6.5 (3.0-9.9)	355 (21 34 (20 187 (10 1,447 (89 7,821 (-48,1 95 (44	12-490) 0-47) 07-263) 06-1,952) 150-13,478) 1-144) 37-457)	305 (233-375) 28 (22-35) 159 (121-195) 1,033 (798-1,254 4,945 (3,943-5,82 54 (43-65)	

What is PM2.5 - Mass [mg/m3] of what ? mix of unspecified substances – which is the toxic one ? what represents the engine emission ?

PM2.5 [µg/m³] identical Mass

But these 3 situations can definitely not represent same air pollution = toxicity

Black Carbon Organic mass Nitrate Sulfate Ammonium Chloride

Which is the Toxic Substance within PM2.5?

Health Effect Equivalence Analysis HEQ, a tool to answer this question. Simplified Example:

Toxicity -Parameters	Sulfates Nitrates	Mineral Dust	Solid Nano- Particles
invasive (mobility)	★	3 < 0.1	★
penetrate membranes ?	1		1
Insoluble	\$	★	★
Solids ?	0.01	1	1
persistant	\$	★	★
collected and stored ?	0.01	1	1
carcinogen	\$	\$	★
mutagene, genotoxic ?	0.01	0.01	1

HEQ The Health Effect Equivalent Model PM2.5 Substance Classes

• Carbon:

- EC (fine, coarse)
- OM / OC (overlap with pPAH)
- pPAH

Inorganics:

- NH4+
- NO3-
- SO4-

Metals and Metaloxides :

- transition metals (all; overlap with individual metal oxides)
- FeO
- MgO
- CaO
- precious metals (all; maybe individual: Pt, Pd, Rh)

• Minerals:

- mineral dust (silicates, incl. Al, Mg, ...

Toxicity Contributors

along the way of the particle entering the organisme

process	parameters	quantify	
Location of	Diffusion	Size,	
aerosol deposition		Hygroscopicity	
Contact with body	Solubility in water	solubility	
surface	in Mucus, Surfactants?	Lipophility	
Translocation	Cell membrane penetration; Phagocytosis	Size	
Interaction	Overall Toxixity	MAK (Threshold)	
	Bioavailability	?	
	Cytotoxicity	?	
	Mutagenicity	?	
	Carcinogenicity	?	
Excretion	Biopersistence	Decay Time	-

Source: M.Kasper, ETH-NPC 2007

HEQ Index Value

HEQ Health Effect Equivalent based on physico-chemical parameters

PM10-HEQ Influence Factors Example

PM10- Compounds	EC < 500 nm	EC > 500 nm	Metals Minerals > 500 nm	Metals <100 nm	Sea Salt	ом	Benz(a) Pyren	Ammonia	Nitrate	Sulfate	Water
Mass %	15	2	10	2	15	20	0.01	10	10	10	6
Solubility	1	1	1	1	0.001	0.2	1	0.01	0.01	0.1	0.0001
Mobility	1	0.1	0.1	1	1	1	1	1	1	1	1
Toxicity	1	0.1	0.1	10	0.01	0.1	50	0.1	0.1	0.1	0.001
HEQ -Index	1	0.01	0.01	10	0.00001	0.02	50	0.001	0.001	0.01	0.000001
PM10-HEQ	15	0.02	0.1	20	0.00015	0.4	0.5	0.01	0.01	0.1	0.000006

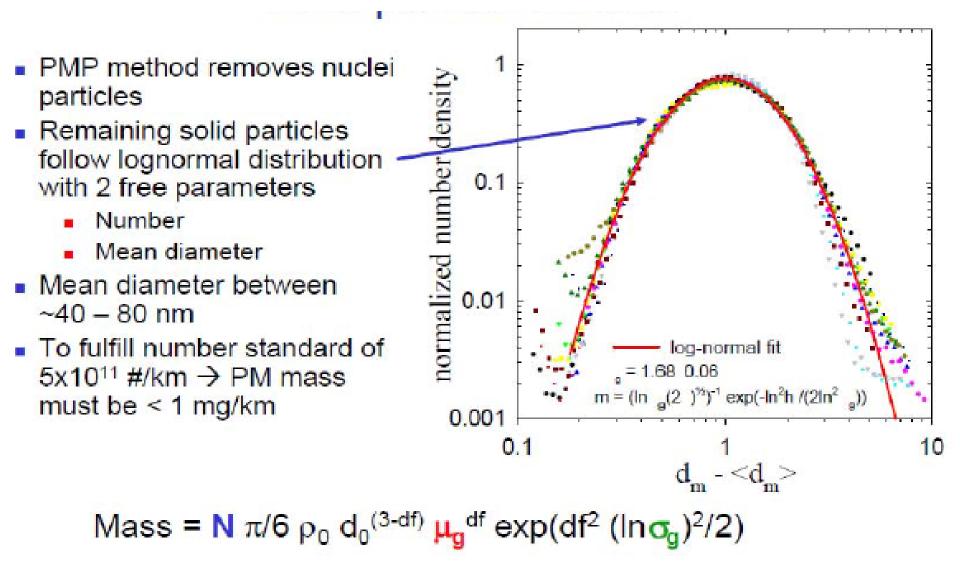
Quantification Elements

and Conclusions for the Urban Environment

- Toxicity of Air Pollution (PM2.5) is dominated by traffic related Nano-Particles
- VERT-Filtration of all engines (plus furnaces) eliminates all particles thus eliminates Toxicity of Air Pollution
- Mortality due to traffic related air pollution nearly eliminated by implementation of DPF and GPF

Financial Elements

- To avoid one premature death
 is a monetized Benefit for the Society of 1M€
 (Sommer 1996, Künzli 2001, WHO, EU, IMO > 1M€)
 10 M deaths worldwide anual financial burden of 10¹³ € (twice BIP of G.)
- To avoid one kg of PM 2.5 is for Swiss conditions a monetized Benefit for the society of 500 € (EU-Studies NEEDS and IMPACT 2008)
- → if this kg PM2.5 contains 10% Diesel Particles by mass the Benefit of avoiding 1 kg Diesel Particles is 5000 €
- → If this kg PM2.5 contains 5% Petrol Particles by mass the Benefit of avoiding 1 kg Petrol Particles is > 10000
- This mirrors the assumption that the health risk of UFP is the same per particle and not per cummulative particle mass

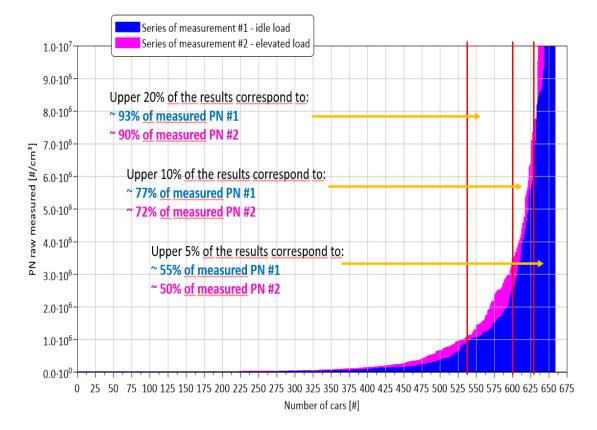

Top-Down Benefit/Cost Model for GPF in a highly polluted city with only gasoline vehicles

- One billion cars kill 10 million persons annually on average 100 cars kill one person every year
- Health cost of one death is 1 M€ (WHO)
- one car causes health cost of 10 k€ per year
- one filter avoids health cost of 10 k€ per year
- over 5 years life the Benefit of one filter is 50 k€
- Cost of GPF retrofit is 1 k€

Benefit / Cost = 50 :1

Bottom-Up Model based on Particle Number following the Maricq-Algorithm,

respecting size statistics, fractal dimension and density



Bottom-up Model based on PN

In-use petrol vehicles: 10⁶-10⁸ Partikel pro cc (corresponds to $10^{12} - 10^{14}$ #/km during WLTP) Mass per particle 1 Femtogramm 10⁻¹⁵ g Mass per cc: 10^{-7} g = 10^{-4} mg per cc Mass per m^3 = mass per km: 100 mg (with 7l/100 km) Mass per year 2000 g Mass per life 10 kg Health cost 10'000 Fr per kg petrol soot

Benefit / Cost for a car with 10⁸ P/cc: 100:1 for emissions of average car 10^7 P/cc \rightarrow B/C = 10:1 for emissions of clean cars 10^6 P/cc \rightarrow B/C

Do we need to retrofit all vehicles? maybe only 10%, the DirtyTail

In this case the benefit / cost will raise to > 100:1

Conclusion

Benefit/Cost: 50:1 in the overall view Benefit/Cost: 10:1 to 100:1 depending on emissions and model Following the DirtyTail Paradigm and retrofit only high emitters: B/C > 100:1

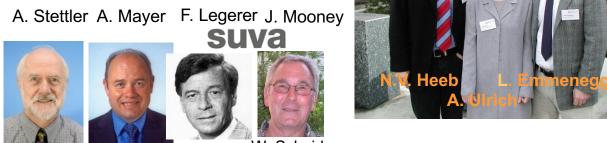
And on Top Global Warming Mitigation in Polar Regions and on Glaciers

VERT-Team

T.W.Lutz H.C. Siegmann

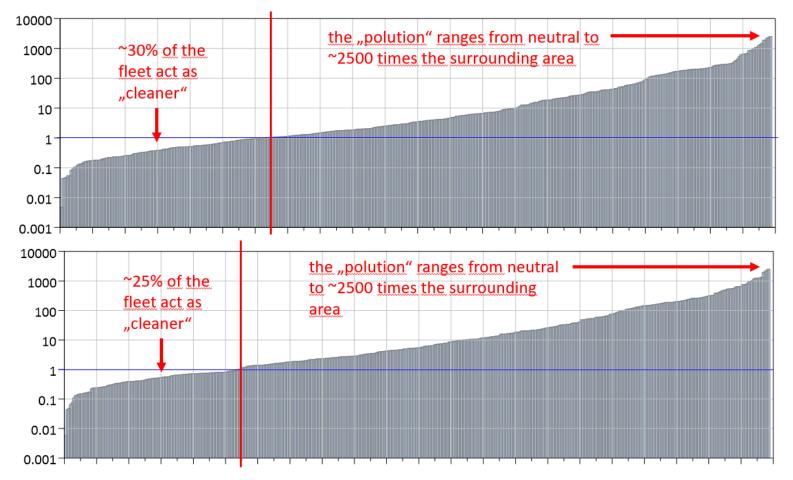
G. Leutert

M. Wyser



F. Jaussi

- H. Egli
- W. Scheidegger



A. Mayer

Particle Emissions of the Swiss Petrol Fleet at 2000 rpm, idle; upper graph: no load; lower graph with some load by air conditioning

Overall Mobility and Consequences

Last week we counted 1480 million cars ww (plus 83 M HDV and 4 M Buses) Every Second 3 more, 100 M per year more Overall E-Mobility is only 3.3 % of this fleet

How will have to deal with combus engine emissions for many more years

We demonstrated the health Risk by Gasoline Particles also in large Projects in China and Mexico

No Diesel Cars in Beijing

20.12.2012

18.12.2013

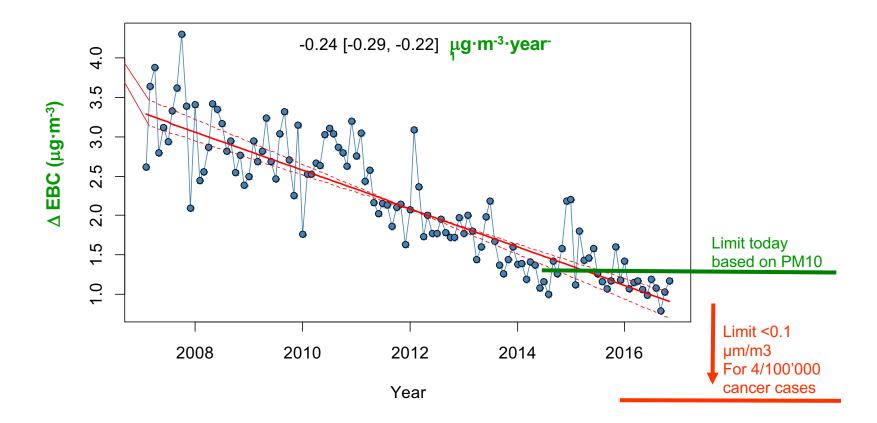
90-120.000 PN/cm³ particle size 40-50 nm PM2.5>300→1200µg/m³

200.000-500.000 P/cm³ particle size 40-50 nm PM2.5<50µg/m³

Apparent disconnect between PN number concentrations and PM concentrations in highly polluted atmospheres (Haze = SOA on nanoparticle condensation cores)

These cities have no Diesel LDV fleet Emission is high because of Petrol Engine emission

Foto tomada el 20 de abril de 2006 a las 8:30 a.m. (smog fotoquímico)



All Megacities have the same pollution problem due to growing size and traffic VERT is everywhere active to transfer Best Available Tehnology for Health and Global Warming Mitigation

Pictures from VERT retrofit pojects

and the Result: Cleaning the Air by DPF in Switzerland

Monitoring BC at the motorway crossing Härkingen

Benefit /Cost Model for GPF in a highly polluted city with only gasoline vehicles

- One billion cars kill 10 million persons annually on average 100 cars kill one person every year
- Health cost of one death is 1 M€ (WHO)
- one car causes health cost of 10 k€ per year
- one filter avoids halth cost of 10 k€ per year
- over 5 years life the Benefit of one filter is 50 k€
- Cost of GPF retrofit is 1 k€

Benefit / Cost = 50 :1

Classic Epidemiology does not accept this model

VERT Filtration of all ICE eliminates all particles so we claim

that the toxicity of the breathing air is eliminated

but PM2.5 mass is only reduced by 5% (gasoline) to 10% (diesel) so classic Epidemiology claims only 5-10% health effect elimination

and this is the Dilemma which needs new approaches