

Associations between Short-Term Ambient Ultrafine and Fine Particulate Matter and Markers of Inflammation and Coagulation in Seniors in the German CorPuScula Study

M. Jakobi, P. Thoelke, S. Lucht, L. Glaubitz, P. Höppe, D. Nowak, C. Herder, P. Angerer,

K. Ogurtsova, B. Hoffmann

Dr. Meike Luise Jakobi

Heinrich Heine University Düsseldorf, Germany ETH 2025

Background Adverse health effects PM 10 PM 2.5 JFP

WHO Ai	r Quality Gu	idelines (20)21)
		Annual	Short-tor

	Particles	Annual mean (μg/m³)	Short-term mean (µg/m³)		
PM ₁₀	< 10 µm	15	45		
PM2.5	< 2.5 µm	5	15		
UFP	< 0.1 µm	No evidence – No Guidelines			

Gaps in literature

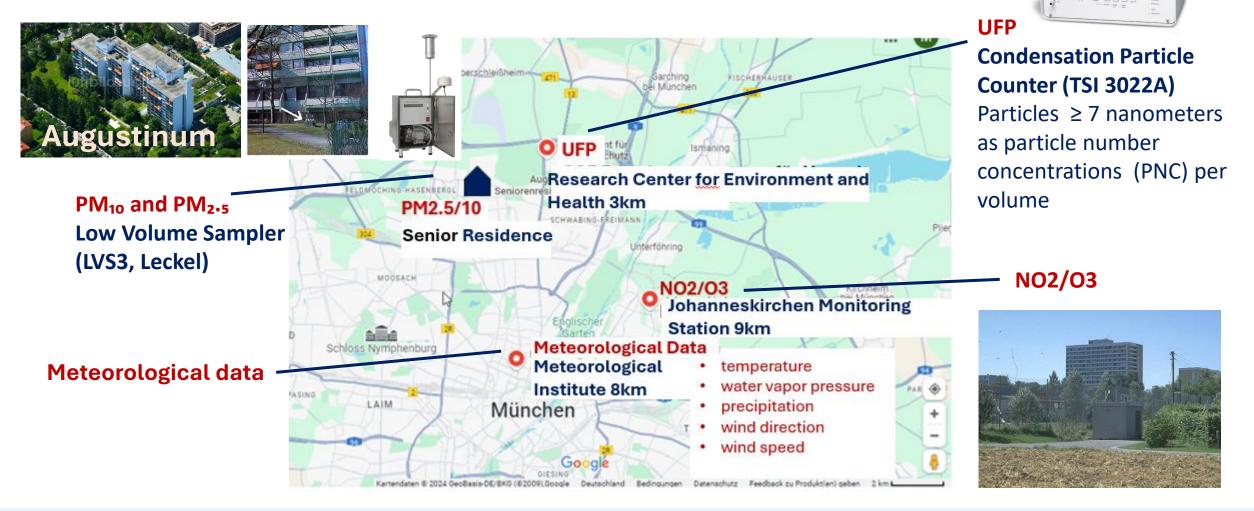
- UFP Limited evidence on health effects
- UFP Few systematic reviews or meta-analyses on blood markers
- UFP Inconsistent adjustment for co-pollutants in existing studies

Objective: Associations between UFP, PM₁₀, PM_{2.5} and inflammatory/coagulation markers, adjusted for co-pollutants

18.06.2025

Methods: Study Design and Participants

- CorPuScula
- **Cor** = Heart **Pu**lmo = Lung **S**anguis = Bood **C**orpus = Body **Corpuscula** = Small particle
- LMU Munich, Germany
- (Institute of Occupational, Social and Environmental Medicine)
- Longitudinal study with repeated measurements
- **Blood samples** collected from **50** elderly participants
- Measurement period for elderly:
 June 1, 2000 July 4, 2001


Photo: Prof. Höppe and Prof. Nowak, LMU Munich

Methods: Exposure Assessment

Methods: Exposure Assessment

1h	3h	12h	24h	Lag0	Lag 1	Lag 2
				PM2.5	PM2.5	PM2.5
	PM10	PM10	PM10	PM10	PM10	PM10
UFP	UFP	UFP	UFP	UFP	UFP	UFP

Daily means (9:30–21:30)

- day of sampling (Lag 0)
- 1 day before (Lag 1)
- 2 days before (Lag2)

Hourly exposures calculated for UFP and PM₁₀ only

Methods: Outcomes

Blood sampling: every two weeks

19 samples per participant on average

Analysis: LMU Munich (Department of Medicine, Central Laboratory)

Inflammatory marker:	Coagulation markers:
CRP (C -reactive protein)	Fibrinogen
	VWF (von Willebrand factor)
	FVIII (Factor VIII)
	PAI-1 (Plasminogen activator inhibitor-1)

Methods: Statistical analysis

Main models:

- Linear mixed-effects regression
- Adjusted for environmental
 - & individual confounders and covariates

Ambient temperature Relative humidity Season (categorical) Behavioural and short-term covariates: Regular medication intake (binary indicator) Alcohol consumption in the past 24 hours Cold or flu symptoms (yes/no) Day of the week Individual-level covariates: BMI at baseline, Age, Sex

•Cardiovascular dysfunction at baseline

Two - pollutant models:

- NO₂ (nitrogen dioxide) or O₃
 (ozone)
- or PM2.5 (only in UFP models)

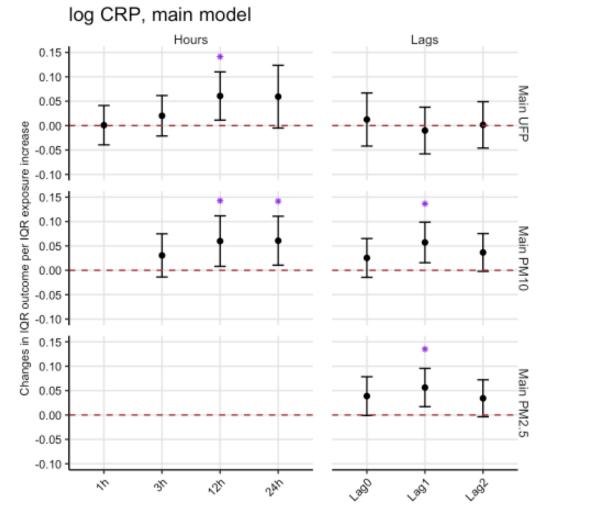
Multi- pollutant models:

Environmental covariates:

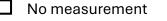
- NO₂ (nitrogen dioxide) and O₃
 (ozone)
- and PM2.5 (in UFP models)

Results: Characteristics of participants at baseline

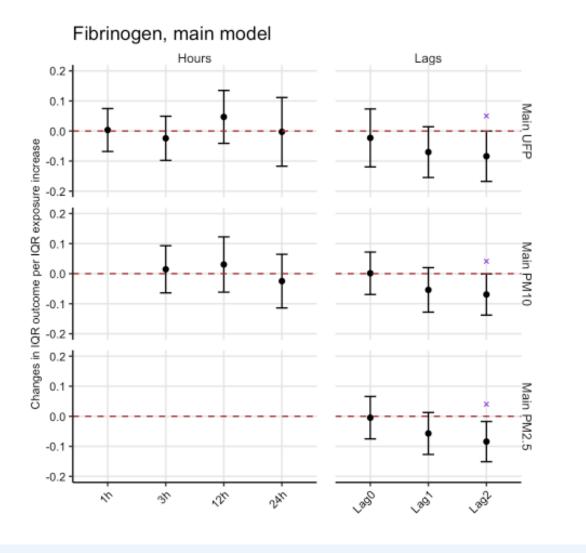
Final sample:


571 observations11.4 observationsper person

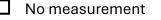
Study Population	(N = 50 seniors)
Mean age:	76.9 years
Sex female	78%
≥1 chronic condition	82%
Medication	84%
Anti-inflammatory drugs	36.6%



	1h	3h	12h	24h	Lag0	Lag1	Lag2	
CRP log								UFP
								PM10
								PM2.5

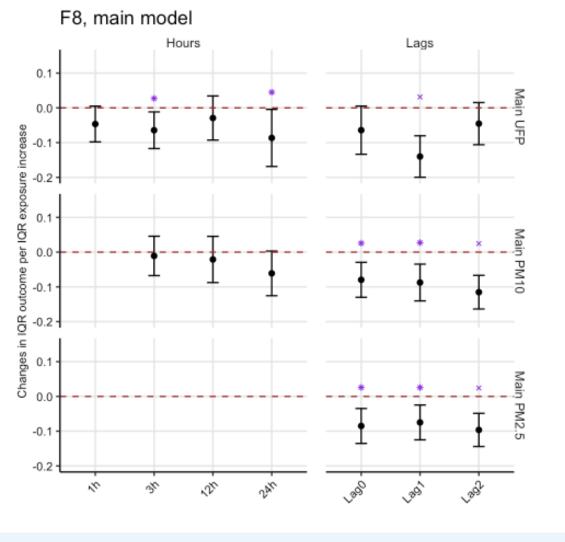

Significant positive association

Measurement without significance



	1h	3h	12h	24h	Lag0	Lag1	Lag2	
CRP log								UFP
								PM10
								PM2.5
Fibrinogen								UFP
								PM10
								PM2.5

Significant positive association


Significant negative association

Measurement without significance

	1h	3h	12h	24h	Lag0	Lag1	Lag2	
CRP log								UFP
								PM10
								PM2.5
Fibrinogen								UFP
								PM10
								PM2.5
FVIII								UFP
								PM10
								PM2.5

No measurement

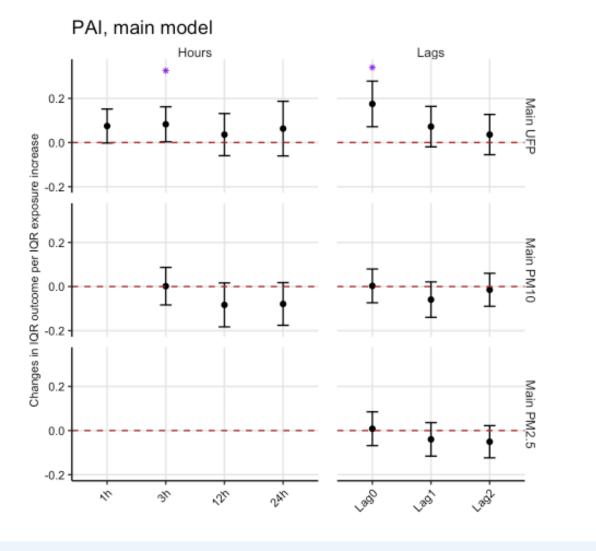
Significant positive association

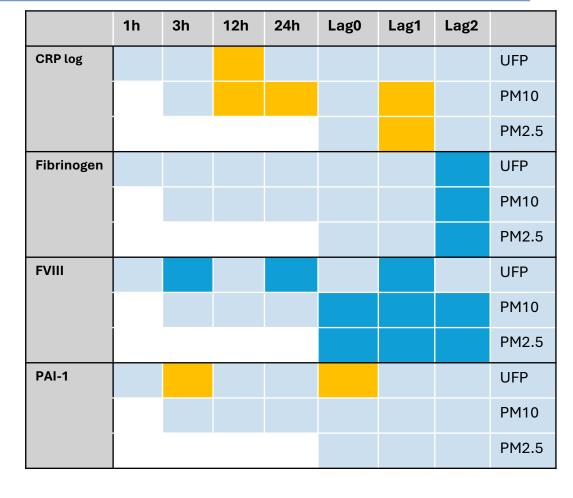
Significant negative association

Measurement without significance

beitsmedizir

ozialmedizin 8


umweltmedizin


Results: Single Models

Heinrich Heine

iversität

isseldorf

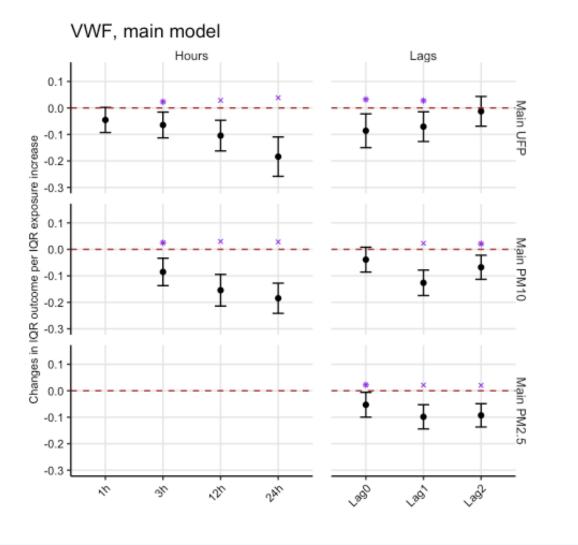
No measurement

Measurement without significance

Significant positive association

Significant negative association

18.06.2025


ETH 2025

chs centre for health & society

	1h	3h	12h	24h	Lag0	Lag1	Lag2	
CRP log								UFP
								PM10
								PM2.5
Fibrinogen								UFP
								PM10
								PM2.5
FVIII								UFP
								PM10
								PM2.5
PAI-1								UFP
								PM10
								PM2.5
VWF								UFP
								PM10
								PM2.5
No m	easurei	ment		Signific	ant posi	tive assoc		
Meas	uremer	nt witho	ut signif	ficance		Signific	ant nega	tive asso

Comparison with Literature and Summary

Biom	arker	Corpuscula Findings	Association	Robust after adjustments	Comparison with Literature
CF	RP	↑ after UFP (12h) ↑ after PM₁₀ (12h/24h, lag 1), PM₂.₅ (lag 1)	+	\checkmark	Consistent with meta-analyses (Zhu 2021, Sun 2020, Lachowicz & Gać 2024); UFP effects less often included
PA	\ -1	↑ after UFP (3h, lag 0)	+	\checkmark	Adds novel evidence for short-term UFP effects; aligns with Sun 2020; rarely addressed in meta- analyses
Fibrir	nogen	 ↓ after UFP, ↓ after PM₁₀, PM_{2.5} (lag 2) 	-	X	Contrasts with meta-analyses (Tang 2020, Zhu 2021); aligns with Rückerl 2006 and Nitter 2021 in parts
vV	WF	 ↓ after UFP (lags 0–1) ↓ after PM₁₀ (lags 1–2), PM_{2.5} (lags 0–2) 	-	\checkmark	Few studies cover short-term effects; our results align with Nitter 2021, Hildebrandt 2009; differ from Liang 2020
F۷	/111	 ↓ after UFP (3h, 24h, lag 1), ↓ after PM₁₀ / PM_{2.5} (lags 0–2) 	-	\checkmark	Literature is limited on UFP and FVIII; Consistent with Rückerl 2006
	18.06	6.2025		ETH 2025	

Strengths & Limitations

Strengths:

- High-resolution exposure data
- Repeated biomarker measurements
- Multi-pollutant models increase robustness

Limitations:

- Small sample (n = 50), elderly only
- Exposure data from 2000–2001
- UFP station 3 km away \rightarrow possible exposure misclassification

Conclusion

- Time-dependent associations found between air pollutants and blood biomarkers in older adults
- Historic data remain valuable for current public health research
- Findings underline the need for:
 - More diverse and contemporary cohort studies
 - Stronger evidence on health effects
 - Better understanding of mechanisms
 - Improved adjustment for co-pollutants and confounders

Acknowledgements

Participants of the CorPuScula Study

Principal investigators: Prof. Höppe and Prof. Nowak Institute of Occupational, Social and Environmental Medicine, LMU Munich, Germany

Funded by the Bavarian State Ministry of the Environment and Regional Development

Gebbude 17.11 Medizinisches Forschungszentrum II

Thank you for listening!

jakobi@hhu.de