

Effect of pad material and regenerative braking on brake wear emissions

<u>Anssi Järvinen¹</u>, Jussi Hoivala², Sanna Saarikoski³, Minna Aurela³, Sami Harni³, Katariina Kylämäki², Topi Rönkkö², Päivi Aakko-Saksa¹

¹ VTT Technical Research Centre of Finland
² Tampere University, Aerosol Physics Laboratory
³ Finnish Meteorological Institute

19.6.2025 28th ETH-Nanoparticles Conference

anssi.jarvinen@vtt.fi

Air quality monitoring stations

Preliminary screening of brake pad elemental composition

Preliminary screening of commercial brake pads

- Purchased from car part dealers in Finland (EU), 7 different pads
- Pads from well-known brake component manufacturers
- Elemental composition from unused pads (Olympus Vanta XRF, Geochem Method)

XRF of commercial pads

- Relatively high differences in <u>elemental</u> composition
 - Note that elements may be ionic compounds
- Two pads selected for further testing:
 - A containing Fe and Cu (low metallic, semi-metallic)
 - D very low Fe and Cu (organic, non-asbestos organic "NAO")
 - but "high" Ca, Ti, Ba

Dynamometer testing of emissions

- In-house-made brake emissions test system
 - In-house-made dynamometer (eDyno), electric motor, inverter, control system
 - Electric ball-race screw actuator pushing brake main cylinder (brake pedal)
 - Ford Focus Mk3 brake system
- Closed loop cooling air system with HEPA H13 filter and temperature control system
- AVL Flowsonix Air ultrasonic flow meter

Particle emission instrumentation

- PM measurements
 - Dekati Cyclone and filter collection (PM10)
 - Dekati DGI impactor (PM2.5)
- PN measurements
 - Dekati eDiluter Pro
 - Airmodus A20 CPC (10 nm)
- Size distribution and PN & PM (real-time)
 - Dekati ELPI+
 - Dekati HT-ELPI+
- Chemical composition
 - Malvern Panalytical Epsilon 4 (XRF-analysis from 47 mm PM10 filters)
- Other instruments not covered in this presentation

Measurement matrix

- Two pad materials
- WLTP brake cycle
 - Normal car ~ 1450 kg total mass
 - Normal car +300 kg extra mass
 - Plugin hybrid/electric car (regenerative braking and +300 kg)
 - Regenerative braking difficult to realize in laboratory conditions
 - Effect depends on vehicle, battery charge state, environmental conditions and driver (in real driving conditions)
 - Relized as braking power of 20 kW, which reduced required brake power and consequently torque
 - More accurate model for current vehicles, see Hagino (2024)

WLTP cycle and regenerative braking

PN and PM

Mathiessen et al. (2023). Atmosphere, 14, 424. https:// doi.org/10.3390/atmos14030424 Grigoratos et al. (2023). Atmosphere, 14, 498. https:// doi.org/10.3390/atmos14030498

PN and PM regenerative braking

Worst and best case: PN and PM

VTT – beyond the obvious

CPC Non-volatile PN₁₀

ELPI+ PM₁₀

Pad D produces less emissions, but...

Pad A has higher friction coefficient "A is better"

VTT

Barosova et al (2018): NAO pads (D) cause adverse effects in vitro studies, pads contained anatase. 400 Low metallic (A) no effects.

Pad D contains Ti, anatase?

Barosova et al. (2018). Archives of Toxicology, 92:2339–2351 https://doi.org/10.1007/s00204-018-2218-8

Size distributions

Concentration decrease: Something semi-volatile?

Volatility of brake wear particles

CPC measurement (after eDiluter Pro)

- cold dilution ~25 °C "TPN"
- hot dilution 350 °C "SPN"

Both pads produced lower number emissions in case of hot dilution **Something is evaporating** Brake disc <160 °C

Fraction of semi-volatile particles:

- Pad A ~30%
- Pad D ~20%

Hagino 2025: "CO2 and nucleation-mode particles with particle diameters of <20 nm are emitted at mild brake temperatures (40–90 °C)"

XRF results from WLTP cycles

Conclusions

Particle number and mass emissions

- Brake pad material affects significantly, Pad D with very low Fe and Cu content produces -60...-70 % less PN and PM emissions than Pad A with Fe and Cu.
- Regenerative braking (PHEV / EV) can reduce emissions over -60 %
- When combining less emitting pad and regenerative braking, reduction ~ -90 % possible.
- Incresed vechicle mass +300 kg provided varied results, sometimes larger, sometimes lower emissions.
- 20-30 % of PN10 is semi-volatile

Elemental composition

- Brake emission particles contain components from pad and disc
- Fe present due cast iron disc although not in Pad D
- No single marker element for brake wear emissions except Fe

Toxicological studies needed to choose least harmful compounds to pads

THANK YOU !

Acknowledegements: VTT staff participating the project Dekati for supplying instruments and providing support Supporting companies

This work received funding from Business Finland (Grant. 7806/31/2022) and Finnish companies through NEX-EL-project and from RePowerEU RRF.

NextGenerationEU

anssi.jarvinen@vtt.fi

01/07/2025 VTT – beyond the obvious