ENHANCING THE TESTING METHODOLOGY FOR MEASURING TYRE PARTICLE EMISSIONS

ETH Nanoparticles Conference (NPC 2025)

<u>Miriam Chacón-Mateos¹</u>, Fabius Epple², Tobias Grein¹, Linda Bondorf¹, Nina Reijrink¹, Manuel Löber¹, Sven Reiland², Michael Eßl², Nina Gaiser¹, Franz Phillipps² and Markus Köhler¹

¹German Aerospace Center - Institute of Combustion Technology

²German Aerospace Center - Institute of Vehicle Concepts

2

- Non-exhaust emissions measurements at DLR
 - Project ZEDU-1
 - Methodology for tyre emissions in a dynamometer
- Selected results
- Next steps

 \bigcirc

Let's go!

Introduction

Year

Emission (Gg) 220 120 120

Year

Source: He, C et al.: A review of non-exhaust emissions on pavement area: Sources, compositions, evaluation and mitigation, J. Traffic Transp. Eng., 11, 6, 1243-1258 / CC BY-NC-ND 4.0

- Tailpipe emissions have been significantly reduced, non-• exhaust emissions are becoming increasingly important
- With the electrification of vehicles, the relative contribution of TRWP to total particulate matter is expected to rise

Miriam Chacón-Mateos, German Aerospace Center, 19.06.2025

Introduction

- Scarce studies
- Discrepancies in the literature
- A lot of factors influence the result
 - Dynamometer or field?
 - T? RH?
 - Tyre pressure?
 - Tyre composition?
 - Vehicle load?
 - Road composition?
 - Speed?
 - Tyre mileage?
 - Tyre age?
 - Collection efficiency?
 - Measurement techniques?

"In summary, the identified primary studies reported 35 TWP PM₁₀ emission factors ranging from 0.00093 to 11.0 mg/vkm (mean of 2.7 mg/vkm, median of 1.1 mg/vkm) including estimates for mixed fleets and resuspended TWP"

Saladin et al., 2024 Airbone tyre wear particles: a critical reanalysis of the literature reveals emission factors lower than expected Environ. Sci. Technol. Lett., 11 (2024), pp. 1296-1307

Standardization is urgently needed!

TWP: Tyre Wear Particles

Institut

Zero Emission Drive Unit Generation 1 (ZEDU-1)

Objective: Demonstration and evaluation of novel technologies for zero-emission driving **Duration:** 03/2020 – 03/2023

Sponsor: Baden-Württemberg Ministry of Economics, Labour and Tourism

Environmental Science and Pollution Research (2024) 31:53521–53531 https://doi.org/10.1007/s11356-024-34543-9

RESEARCH ARTICLE

Investigations of airborne tire and brake wear particles using a novel vehicle design

Manuel Löber¹ · Linda Bondorf¹ · Tobias Grein¹ · Sven Reiland² · Steffen Wieser² · Fabius Epple² · Franz Philipps² · Tobias Schripp¹

ZEDU-1 Demonstrator

• Reduction of airborne tyre emissions: Housing with particle extraction and filter system

Development of tyre measurement methods: The 3 step approach

- Same vehicle / rear tyres
- Tyre temperature monitoring / Same start temperature
- 4 roller chassis dyno
- WLTC 3b, driving error limited
- Constant ambient temperature
 and RH
- Clean room conditions
- Monitoring of background concentration
- Identical instrumentation
- PM gravimetric cyclone (offline)
- PN condensation CPC (online)
- PSD optical OPS (online)

Adapted from Seren Celenlioglu et.al., *Influence of Collection System on the Tyre Wear Emission Measurements* in Tyre Emission Research Conference, Munich, 04 Dec 2024

Methodology – Collection systems

140

120

100

80

60

40 20 0

0

200

400

600

800

Time (s)

1000

(km/h)

Speed

Chassis dynamometer test bench

- Realistic driving resistance
- Electric vehicle BMW i3
- WLTC class 3b
- Brake encapsulation
- Tyre surface < 30 °C
- T: 23 °C, RH: 50 %
- Nozzle adaptation for isokinetic sampling
- Constant dilution rate
- Background particles control
- Characterization of particle losses

Low + medium

WLTC class 3b

High

1200

Open Collection System (DLR[™])

Housing Collection System (DLR[™])

WLTC: Worldwide Harmonised Light vehicles Test Cycle

Miriam Chacón-Mateos, German Aerospace Center, 19.06.2025

Methodology – Particle measurement techniques

Stationary sensor network (PM + Gases)

MCPC: Mixing condensation particle counter OPS: Optical particle sizer OPC: Optical particle counter SEM-EDX: Scanning electron microscopy-energy dispersive X-ray spectroscopy RDE: real driving emission

Background

Open

System

Housing

System

Miriam Chacón-Mateos, German Aerospace Center, 19.06.2025

Results – Housing vs open system (average 8 WLTCs)

7 nm to 2 µm

0.3 to 10 µm

Results – Background OPS and OPC-N3 sensors 8 WLTC

Characterization of airborne tire particle emissions under realistic conditions on the chassis dynamometer, on the test track, and on the road

Linda Bondorf 🔤 💿, Manuel Löber 💿, Tobias Grein 💿, Lennart Köhler, Fabius Epple, Tobias Schripp 💿, 📖 show all

- Normalization by substraction of the background concentration (CPC)
- A dominating ultrafine particle mode at 10 nm and a second esmission mode at 270 nm

- SEM analysis: A variety of particle types, indicating different particle formation processes
- Chemical composition (EDX) is dominated by C, O and Fe, with the latter presumably originating from the drum surface

housing

sampling

Characterization of airborne tire particle emissions under realistic conditions on the chassis dynamometer, on the test track, and on the road

Linda Bondorf 🔤 💿, Manuel Löber 💿, Tobias Grein 💿, Lennart Köhler, Fabius Epple, Tobias Schripp 💿, 📖 show all

Driving cycles and Emission Factors (EF)

- Four different driving cycles investigated on the chassis dynamometer
- Emission factors (EF) calculated using background correction and the volume flow

- Large variance of the EF from 1.15 × 10⁹ #/km for the LA4 to 2.75 × 10⁹ #/km for the US06
- A representative driving cycle and real-world driving emissions measurements are crucial

Driving Cycle	Avg. Velocity (km/h)	Avg. Force (N)	UFP o le	ft rear EF/EF _{WLTC Class 3b}
WLTC Class 3b	46.5	277.7	7 Understood!	1.0
Großglockner	40	505.1	No more	r
ZEDU RDE	47.2	316.6	aggresive	
LA4	31.5	235.9	driving!	
US06	77.9	487.1		
*particles between	ι 4 nm and 3 μm			
Miriam Chacón-Mateos, Gerr	man Aerospace Center, 19.06.2	2025		

Next steps

- Additional sensors will be added for better understanding on the tyre surface temperature (thermography) and its influence in the UFP emissions
- Optimize Housing Collection System for measurements on the roads
- Integrate low-cost sensors for RDE testing

Impressum

 \bigcirc

0

Thanks for your attention :)

Topic:	Enhancing the testing methodology for measuring tyre particle emissions				
Date:	2025-06-19				
Author:	Miriam Chacón Mateos, German Aerospace Center				
E-Mail:	Miriam.chaconmateos@dlr.de				
Copyright:	All Figures "DLR (CC BY-NC-ND 3 0)." unless otherwise specified				
	I have a lot questions!!!				