

Ok, I'm listening!

Research Objectives

Despite their infrequent and short-lasting nature, Diesel Particulate Filter (DPF) regeneration events can produce a disproportionate amount of particle emissions, which have critical implications for air quality and public health.

The objectives of this research are:

- Assess DPF Regeneration Frequency and Duration
- Investigate Impact on Particulate Number (PN) Emissions
- Analyze Particle Size Distribution and Nanoparticle Levels
- Evaluate Toxicological Effects of Emissions

Agenda

Introduction

- DPF Regeneration
- Methodology
 - Experimental plan
 - The Laboratory
 - Measurement Setup
 - Cell Exposure ALI System

Results

- Gaseous Emissions
- Particulate Emissions
- Dosing
- Toxicity assessment

Conclusions

Diesel Particle Filter (DPF)

Exhaust

How it works:

• The exhaust gases pass through the porous walls of the filter, where the particulate matter is trapped.

D

- Over time, the soot accumulates in the DPF, which needs to be periodically cleaned through a process called **regeneration**.
- Regeneration can be passive (occurs naturally during normal driving conditions when the exhaust temperature is high enough) or active (when the engine management system initiates a process to increase the exhaust temperature to burn off the soot).

Our Vehicle					
Fuel	Diesel				
Engine	1598 CC/ 85kW				
Gearbox	Manual/ 6 gears				
Emission standards	Euro 6d				
Aftertreatment system	DOC/ DPF /LNT/SCR				
Model Year	2021				
Mileage	48000				

Experiment explanation

Toxicological characterization (ALI exposures)

Dosing calculation

•

- Total (Solid + Volatile) Particles with cut-off size 10nm (TPN23)
- Particle size distribution
- 4 different driving patterns including RDE
- More than 4500km in Chassis dyno
- **12** active regeneration recorded
- 16 2-h real time cell exposures 8 w/ regeneration +8 w/o regeneration)

The Laboratory

Chassis dynamometer

LAF

Air Liquid Interface

CULTURE

A549 human epithelial adenocarcinoma cells were cultured until 80% confluency and then recultivated in a concentration of 2x10⁵ cells/well and cultured for 24h

8 Wells - 24h - Cells in incubation (full medium)

Vehicle Emission Levels

- Average Distance between DPF active regenerations: ~ 415 km (Std 19 km) and duration 21-30 mins
- At least **2 orders** of magnitude more emissions levels during 2h-driving cycles when regenerations is included
- The Euro 6 standard* is not surpassed even when the regenerations is included.
- A significant release of **volatile** particles occurs during DPF regeneration
- All other emissions increase during regeneration too (slightly but significantly)

	THC	CH4	NOX	NO	CO	CO2
	mg/km	mg/km	mg/km	mg/km	mg/km	g/km
w/o Regen	17	16	118	93	26	144
w/ Regen	28	29	123	95	38	150
Euro 6 limit	-	-	80	-	500	-

Euro 6 standard: The legislation sets a limit for diesel and gasoline direct injection (GDI), vehicle under the Worldwide Harmonized Light Vehicles Test Procedure (WLTP).

For particle, this limit is 6.0 × 10^11 particles/km for solid particles with cut-off size of 23nm (SPN23)

Particle size distribution and dosing

The **mass deposited in the cells** increases by an average of **15 times** during regeneration cycles During regeneration, the **presence of nanoparticles** becomes more pronounced:

- Their **proportion** in the mixture increases significantly.
- Both the **number and mass** of nanoparticles rise substantially.

1E+15

Cytotoxicity: Cell Viability

- Gaseous emission reduces cell viability
- Regeneration nanoparticles further reduce viability

Alamar Blue:

*p<0,05 **p<0,01 ****p<0,0001 One way ANOVA

LDH:

####p<0,0001 compared to control (+) *p<0,05 **p<0,01 ****p<0,0001 One way ANOVA

Cytotoxicity: Cell stress (Inflammation)

- Gaseous emission increases cytokine production
 - *p -***p, compared to control
- Particles further increase cell stress
 - *p -***p, nanoparticles vs gaseous emission
- The regeneration increase cell stress

Conclusions

Particle emissions:

The vehicle is a **low emitter**. However, during **DPF regeneration events**, can generate significant amounts of **solid** and **volatile** particle, up to **three orders** of magnitude higher.

Viability Reduction and Emissions:

Reduced cell viability is observed only due to gaseous emissions, not particles, during normal DPF operation. However, particles **generated during** regeneration also reduce cell viability, indicating a **potential threat** to human health.

Cell stress (Cytokine Production):

Both gaseous emissions and particles increase cytokine production, with the effect being more noticeable during regeneration, supporting our previous findings.

Contact Information & Acknowledgments

- Name: Samaras Zissis
- Email address: <u>zisis@auth.gr</u>
- Telephone: 0030 2310996014

This work was supported by the Horizon 2020 project nPETS,

under grant agreement No 954377

Please contact us for your virtual participation through: <u>https://www.npets-project.eu/index.php/contact/</u>

Nanoparticle Emissions 🔆 nPETS From The Transport Sector: **Health And Policy Impacts**

FINAL EVENT IN 2024 BRUSSELS, BELGIUM

JOIN US TO SHARE YOUR VIEWS!

Georgios Tsakonas PhD Student e: geortsak@auth.gr

Themos the Cat Ministry of Pets

LABORATORY OF APPLIED THERMODYNAMICS ARISTOTLE UNIVERSITY SCHOOL OF MECHANICAL ENGINEERING

