

QUANTITATIVE MEASUREMENT OF DYNAMIC CHANGES OF TRACE ELEMENT CONTENT IN AMBIENT AEROSOL BY MICAP-TOFMS

Martin Tanner, Carsten Stoermer

27th ETH-Nanoparticles Conference (NPC-24)

INSTRUMENT LAYOUT AND PERFORMANCE

First Proof of Concept Instrument at TOFWERK

N2ICP-001 Prove of Concept (POC) Instrument and Schematics

- MICAP plasma source (RADOM Corp.)
- Grounded sampler and skimmer
- Extraction lens
- 63 mm gate valve
- Ion Mirror
- Collision-/Reaction Cell
- Notch Filter
- TOFMS with R3000

INSTRUMENT LAYOUT AND PERFORMANCE

Performance Characterization using Micro Droplet Generator (MDG) technology

Video capture of Single droplet Mass Spectrum and time dependent signals of single droplets

- 100 ppb multi-element standards (Merck IV, REE's)
- Droplet volume: 142 pL
- Analyte per droplet: 14.2 fg
- 3 ms integration time
- Plasma on
 - Air (not dried)
 - N2 (Generator using PSA principle)

DIRECT AIR SAMPLING

Passive Sampling by Venturi Effect

Air sampling using standard nebulizer

4 TDFWERH | N2ICP-TOFMS | 13 / June / 2024 |

- Air sampling without pump in the sample flow path to the ion source (no GED required)
- Membrane pump to flush sample line
- Use of conventional Nebulizer
 ~0.15 L/min air sampling

DIRECT AIR SAMPLING – DATA STRUCTURE

Single particle signals, LOD's from filtered air

• Background: HEPA Filter

Application 🔶

- Continuous measurement with 1 s integration time
- Background LOD determined from filtered aerosol
 - Log-Normal background fit accepting 5% false-positive/-negative

Signal from filtered and un-filtered outdoor air (left) LOD calculation from filtered air signal (right)

DIRECT AIR SAMPLING – CASE STUDY

Application 🔶

Are there Metals in the Air?

TOFWERK headquarters in Thun (left) Workspace shared with solar industry (right)

- TOFWERK shares workspace with solar industry
- Are there metals in the air?
- Are metals indicative for manufacturing activities?

6 TDFUERH | N2ICP-TOFMS | 13 / June / 2024 |

DIRECT AIR SAMPLING – PARTICLE INFORMATION

2 days experiment Signal with 1 s integration time

DIRECT AIR SAMPLING – PARTICLE INFORMATION

Element ratios

- 1s integration time
- Ratios of mass per particle: Cr/Fe

Application 🔶

 Stainless steel particles high Cr content – soldering wire

Element ratio depending on particle mass

DIRECT AIR SAMPLING - QUANTIFICATION

Application 🔶

Average Concentration in ng/m3

Lower LOD than from single Particle Data

Signal summed to 10 min intervals

- Sampled air volume per time [m³/s]
- Sampled Analyte Mass per Time [ng/s]
- Analyte concentration in sampled air [ng/m³]

MAK values for Pb in air 0.1 mg/m3 - Pb and Pb-compounds (except Pb-Me4 and Pb-Et4) 0.05 mg/m3 - Pb-Me4 and Pb-Et4 Source: SUVA

DIRECT AIR SAMPLING

Application 🔶

Signal summed to 10 min integration time

- Signal measured at **1 s** integration
- Smoothing of the Signal by summation to 10 min intervals
- Ability to follow dynamic events
- Washout after intense events?

Lower LOD than from single Particle Data

DIRECT AIR SAMPLING - SUMMARY

MICAP-TOFMS provides

- Direct air sampling
- Single particle information [fg/particle]
- Detection of concentrations in [ng/m³] range.
- Measurement intervals:
 - Milliseconds, minutes, days
- Ability to follow dynamic concentrations
- Indication for particle sources
 - Dynamic time dependent signal
 - Composition of individual particles

Application 🔶

THANK YOU!!

Martin Tanner

m.tanner@tofwerk.com

27th ETH-Nanoparticles Conference (NPC-24)

