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Validation of the Condensation Technique

Incompressible Navier-Stokes

Objective: there is an urgent need for developing instruments and techniques that can measure the true 

properties of nanoparticles as a solid base to further derive secondary properties. This is achieved here 

by accounting for change in nanoparticles geometry.

Proposition: most nanoparticles can be processed at moderately-high temperatures (condensation 

technique), whereas a minority are temperature sensitive, e.g., plastics (coagulation technique)4

▪ Fundamental aerosol properties such as volume and density are not known1

▪ True volume is crucial to determining density and derived properties, e.g., porosity2, packing factor3

▪ Material density is usually assumed as a constant value from bulk measurements:

What about coated, oxidized, or multicomponent (e.g., bimetallic) nanoparticles?

▪ Precise volume and density are required in numerous applications, such as:

 Nanotechnology and energy (sensors, plasmonics, catalysis, batteries)

     Aerosol metrology (realistic metrics, standards, calibration)

 Environment (black and brown carbon, nanoplastics)

 Health science (cancer treatment, drug delivery)

 Industry (powders, coatings)

▪ Current gap: no technique exists for the direct online measurements of volume and density of 

nanoparticles

▪ Technique was validated using polystyrene nanospheres (PSL) at 220 nm 

▪ Particle growth (mass and mobility diameter) increases monotonically with saturator temperature
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Volume and Density Measurement

Processing of Ag Aggregates

▪ Triple point (P2) separates the multi-stage condensation

▪ Tsat is set in the region [Tmin, Tmax]

▪ Filling mechanisms include

Ab initio cluster and islands formation (pore adsorption, pendular rings)

Surface diffusion and film formation v. droplet growth (hydrophobic)

𝐴 = 𝜋𝑟2 

Feasibility of a Coagulation Technique

Condensation Technique

▪ Laminar-flow convective cooling growth apparatus (GA) (Le > 1)

▪ Wetted porous tube for maximum inlet saturation uniformity

▪ Temperature-controlled sheath flow to constrain saturation (and particles) along the axis of the condenser

▪ High temperature saturator and moderately-high temperature condenser

▪ Working fluids: heavy oils with low vapour pressure

Volume/Density of Ag Nanoparticles
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Figure 8: True volume (Vs) and surface area (SA) of Ag 

aggregates and spheres v. initial mobility diameter (dm,i).

Figure 7: Growth of silver aggregates in mass 

and mobility with saturator temperature.

▪ Relationship between Vs and dm,i for Ag aggregates is

V𝑠 = 3.75 dm,i
2.48

▪ Average true density of Ag aggregates is obtained from the 

slope of the (mi, Vs) curve and can reach down to 

~ 2,000 kg/m3, which agrees with the density found for Ag 

primary particles5

▪ Large overestimation of volume using spherical approximation

▪ Surface area is derived using the true volume according to 

semi-empirical relations6

▪ Size-dependent packing factor: 0.47 (135 nm) to 0.89 (57 nm)

▪ Size-dependent porosity is estimated using the effective 

density (from mass-mobility): 54% (135 nm) to 11% (57 nm)
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Figure 6: Growth factor v. condenser sheath flow rate.Figure 5: Coated PSL mass (left) and mobility (right) v. saturator temperature.

▪ Additional sheath flow affects the growth and is crucial for stability:

Smaller growth, number concentration, and distribution width due to shorter residence time

▪ This demonstrates the ability of the instrument to cause condensation on hydrophobic polymer surfaces

▪ Retrieved values for the volume and density differ by 10.9% and 5.2%, respectively, with the PSL 

manufacturer-derived values

Theory and Principles
▪ (i) Using a very low vapour pressure oil, the coating mass must be conserved

(ii) A region exists where the particles grow radially, i.e., as spherical droplets

mf −mi =
𝜋

6
dm,f
3 − Vs 𝜌c   

Principles and Setup

Particle-Droplet Collision

▪ 0-D collision model used to design the coagulation chamber and choose the experimental setpoints

▪ Mono-mobile droplets and particles shown to ‘attach’ via joint electrostatic and Brownian interactions

▪ Sticking coefficient assumed unity, however the collision v. coagulation kinetics need further investigation

Figure 3: Condensation rig.

Figure 1: Temperature field

(infrared) during warmup.

χf =
dmCve
dveCm

= 1and

Figure 2: Ag NPs sintering at 

700°C (top: molecular dynamics, 

bottom TEM images).

▪ Vapour and particles transport in the condenser: solutions for heat and mass transfer coupled with 

Lagrangian particle tracking

▪ Supersaturation region along the axis with S > 10

▪ Diverging section to facilitate activation (pressure gradient)

▪ Residence time for particles ~ 5 s in condenser

▪ Assuming that all the vapour condenses on the surface of the particles, the final particle size can be 

estimated, e.g., 50 nm Ag spheres grow up to 300 nm with N = 5.5.105 part/cm3 and Tsat = 120°C
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▪ Vapour diffuses to the walls while smaller particles are lost

▪ Poorly-controlled growth (due to large variations in residence time) resulting in broader size distributions

         

change in mass = mass of coating

▪ Small sintered Ag aggregates have also been measured: Vs = 1.4.103 nm3 (20 nm), 6.2.103 nm3 (30 nm), 

7.9.103 nm3 (40 nm). The retrieved density (~ 11,000 kg/m3) is higher than both the oxidized and pure 

states of silver possibly due to changes in lattice parameter during sintering

Figure 9: Coagulation rig.

Figure 10: Modeled non-dimensional collision kernel 

components.
Figure 11: Mass and aerodynamic spectra of attached 

particles-droplets.
Figure 4: Saturation fields with/without sheath flow (top/bottom)
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