Measurement of Nanoparticles True Volume and Density in the Aerosol Phase

C. Jourdain¹, J. Pongetti², J.P. Symonds², A.M. Boies¹

ETH Nanoparticles Conference, June 10-14, 2024

Background and Motivation

Fundamental aerosol properties such as volume and density are not known¹ True volume is crucial to determining density and derived properties, e.g., porosity², packing factor³

Material density is usually assumed as a constant value from bulk measurements: What about coated, oxidized, or multicomponent (e.g., bimetallic) nanoparticles? Precise volume and density are required in numerous applications, such as: Nanotechnology and energy (sensors, plasmonics, catalysis, batteries) Aerosol metrology (realistic metrics, standards, calibration) Environment (black and brown carbon, nanoplastics)

Validation of the Condensation Technique

Technique was validated using polystyrene nanospheres (PSL) at 220 nm

Particle growth (mass and mobility diameter) increases monotonically with saturator temperature

- Additional sheath flow affects the growth and is crucial for stability:
- Smaller growth, number concentration, and distribution width due to shorter residence time
- This demonstrates the ability of the instrument to cause condensation on hydrophobic polymer surfaces
- Retrieved values for the volume and density differ by 10.9% and 5.2%, respectively, with the PSL manufacturer-derived values

- Health science (cancer treatment, drug delivery) Industry (powders, coatings)
- Current gap: no technique exists for the direct online measurements of volume and density of nanoparticles

Objective: there is an urgent need for developing instruments and techniques that can measure the true properties of nanoparticles as a solid base to further derive secondary properties. This is achieved here by accounting for change in nanoparticles geometry.

Proposition: most nanoparticles can be processed at moderately-high temperatures (condensation) technique), whereas a minority are temperature sensitive, e.g., plastics (coagulation technique)⁴

Volume and Density Measurement

Theory and Principles

• (i) Using a very low vapour pressure oil, the coating mass must be conserved (ii) A region exists where the particles grow radially, i.e., as spherical droplets

$$(\mathbf{m}_{\mathrm{f}} - \mathbf{m}_{\mathrm{i}}) = \left(\frac{\pi}{6}d_{\mathrm{m,f}}^{3} - V_{\mathrm{s}}\right)\rho_{\mathrm{c}}$$
 and $\chi_{\mathrm{f}} =$

$$\chi_{\rm f} = \frac{\rm d_m C_{\rm ve}}{\rm d_{\rm vo} C_{\rm m}} = 1$$

change in mass = mass of coating

Processing of Ag Aggregates

- Triple point (P2) separates the multi-stage condensation
- T_{sat} is set in the region [T_{min}, T_{max}]
- Filling mechanisms include

Contact: cj443@cam.ac.uk

Ab initio cluster and islands formation (pore adsorption, pendular rings) Surface diffusion and film formation v. droplet growth (hydrophobic)

Volume/Density of Ag Nanoparticles

Relationship between V_s and d_{m,i} for Ag aggregates is

 $V_s = 3.75 d_{m.i}^{2.48}$

Average true density of Ag aggregates is obtained from the slope of the (m_i, V_s) curve and can reach down to ~ 2,000 kg/m³, which agrees with the density found for Ag primary particles⁵

- Large overestimation of volume using spherical approximation
- Surface area is derived using the true volume according to semi-empirical relations⁶

- Laminar-flow convective cooling growth apparatus (GA) (Le > 1)
- Wetted porous tube for maximum inlet saturation uniformity
- Temperature-controlled sheath flow to constrain saturation (and particles) along the axis of the condenser
- High temperature saturator and moderately-high temperature condenser
- Working fluids: heavy oils with low vapour pressure

Growth Apparatus Simulation

Incompressible Navier-Stokes

- Vapour and particles transport in the condenser: solutions for heat and mass transfer coupled with Lagrangian particle tracking
- Supersaturation region along the axis with S > 10
- Diverging section to facilitate activation (pressure gradient)

----150 $d_{m,i}$ [nm]

Figure 8: True volume (V_s) and surface area (SA) of Ag aggregates and spheres v. initial mobility diameter (d_{m i}). Size-dependent packing factor: 0.47 (135 nm) to 0.89 (57 nm)

 Size-dependent porosity is estimated using the effective density (from mass-mobility): 54% (135 nm) to 11% (57 nm)

• Small sintered Ag aggregates have also been measured: $V_s = 1.4.10^3$ nm³ (20 nm), 6.2.10³ nm³ (30 nm), 7.9.10³ nm³ (40 nm). The retrieved density (~ 11,000 kg/m³) is higher than both the oxidized and pure states of silver possibly due to changes in lattice parameter during sintering

Feasibility of a Coagulation Technique

- Residence time for particles ~ 5 s in condenser
- Assuming that all the vapour condenses on the surface of the particles, the final particle size can be estimated, e.g., 50 nm Ag spheres grow up to 300 nm with N = $5.5.10^5$ part/cm³ and T_{sat} = 120° C

Figure 4: Saturation fields with/without sheath flow (top/bottom)

Vapour diffuses to the walls while smaller particles are lost

Poorly-controlled growth (due to large variations in residence time) resulting in broader size distributions

References

1. Sipkens T. et al., J. Aerosol Sci., **173** (2023) 2. Zangmeister C. D. et al., PNAS, 111, 25 9037-9041 (2014) 3. Lee S.Y. et al., Carbon, 49, 7, 2163-2172 (2011)

4. Jourdain C. et al., in preparation (2024) 5. Schleicher B. *et al.*, *J. Appl. Phys.*, **78**, 4416-4422 (1995) 6. Eggersdorfer M. L. et al., J. Aerosol Sci., 46, 7-19 (2012)