

Effects of photochemical aging on the chemical and optical properties of exhaust emissions from a small-scale jet engine burner

Anni Hartikainen¹, Mika Ihalainen¹, Quanfu He², Arya Mukherjee¹, Tuukka Kokkola¹, Seongho Jeong³, Deeksha Shukla^{3,4}, Uwe Etzien⁴, Marius Rohkamp⁵, Delun Li⁶, Krista Luoma⁶, Aki Virkkula⁶, Hanna Koponen¹, Martin Sklorz^{3,4}, Thorsten Streibel⁴, Benedikt Gündling⁵, Thorsten Hohaus², Bert Buchholz⁴, Andreas Hupfer⁵, Thomas Adam⁵, Johan Øvrevik^{6,7}, Ralf Zimmermann^{3,4}, and Olli Sippula¹

¹University of Eastern Finland, Kuopio, Finland; ²Forschungszentrum Jülich, Germany; ³University of Rostock, Germany; ⁴Helmholtz Zentrum München, Germany; ⁵University of the Bundeswehr Munich, Germany; ⁶Finnish Meteorological Institute, Finland; ⁷Norwegian Institute of Public Health, Norway; ⁸University of Oslo, Norway

UEF// University of Eastern Finland

→ Exposure resulting in adverse health outcomes

OH, O3, NO3

₩Ш

 \rightarrow Impact on radiative forcing

ULtrafin TRanspo

Sources

合

ULtrafine particles from TRansportation -Health Assessment of

UEF// University of Eastern Finland

- Determine secondary aerosol formation potential for aircraft emissions
- Investigate how photochemical aging influences the aircraft exhaust aerosols:
 - Chemical and physical properties relevant for health impact assessment
 - Aerosol optical properties relevant for climate impact assessment

Experimental design: combustor rig

- Combustor rig, incl. combustion chamber of a turbine engine
 <u>Ino compressor</u>, no turbine, no lubrication oil
- Fuel: kerosene-based jet fuel (JP-8)
- One operation mode (idle, 7% nominal load) representing the average of a land- and takeoff cycle

Experimental design: photochemical aging in the Photochemical Emission Aging Flow Reactor (PEAR)^[1]

 $O_3 + hv \rightarrow O_2 + O(^1D)$ $H_2O + O(^1D) \rightarrow 2OH$

Hydroxyl radical (OH) exposures equivalent to 1) ~2 days in atmosphere (DR 1:50) 2) 1-7 eqv.d (DR 1:200)

Emission Aging flow tube Reactor (PEAR), Aerosol Science and Technology. DOI: 10.1080/02786826.2018.1559918

Fresh exhaust: bimodal distribution of mainly spherical, organic particles

Fresh exhaust gases: CO2, CO, and organic gaseous species

Organic gaseous pollutants altered by photochemical processing

(PTR-ToF-MS; average over 12h (fresh) or 16h (aged))

Mass enhancement by a factor of ~300, organic aerosol becomes increasingly oxidized

Average carbon oxidation state $OS_C = 2 \times 0$: C - H: C

UEF// University of Eastern Finland

Organic aerosol composition development typical for NO_x -limited conditions

Organic aerosol composition development typical for NO_x -limited conditions

UEF// University of Eastern Finland

[2] Ng et al., 2011. Atmos. Chem. Phys., 11, 6465– 6474. doi:10.5194/acp-11-6465-2011

Jet rig, DR50 Jet rig, DR200

Diesel generator

Residential wood combustion [3]

Passenger car (gasoline) [4]

[3] Hartikainen et al., 2020. Atmos. Chem. Phys., 20, 6357–6378. doi: 10.5194/acp-20-6357-2020

[4] Hartikainen et al., 2023. J. Aerosol Sci., 171, 106159. doi: 10.1016/j.jaerosci.2023.106159

Aging increased light absorption by the exhaust

Absorption coefficients in raw exhaust conditions, measured by the *aethalometer*

 for 'brown carbon' only (=attenuation fit to 660-950 nm subtracted)

mean ± SD of means of 4 h experiments (n=4)

Absorption by water soluble organic carbon (WSOC)

- Mass absorption efficiencies (MAE) slightly higher for fresh WSOC
- Total absorption by combustion of 1 kg of fuel (A-EI) increases in line with the OC enhancement

(UV-VIS Spectrometer, mean ± SD, n=4 for fresh, 3 for aged exhausts)

UEF// University of Eastern Finland

500

550

n

350

400

450

Wavelength (nm)

Absorbance also by water insoluble organic carbon

UEF// University of Eastern Finland

(UV-VIS Spectrometer, mean ± SD, n=4 for fresh, 3 for aged exhausts)

Fresh exhaust has warming, aged exhaust cooling impact on climate

[5] Saleh, R. 2020. Curr Pollution Rep., 6, 90–104. DOI: 10.1007/s40726-020-00139-3

- Photochemical aging led to notable formation of secondary organic aerosol: ×300 increase in particulate mass
 - should be considered when assessing health impacts of aviation
- Continuous transformation of particle chemical composition, similarly to other organic aerosol sources
- Formation of weakly absorbing organic aerosol
 - shift from warming to cooling climate impact upon photochemical aging

Contact: anni.hartikainen@uef.fi

Thank you for your attention!

Acknowledgments: This work was supported by Horizon2020 project **ULTRHAS** (agreement 955390) and Research Council of Finland project 'Black and **Br**own **C**arbon in the **A**tmosphere and the **C**ryosphere (**BBrCAC**)' (grant 341597).

AH acknowledges financial support by Fortum and Neste Foundation.

ULTRHAS FORTUMIN JA NESTEEN SÄÄTIÖ FORTUM AND NESTE FOUNDATION

Funded by the European Union

der Bundeswehr Universität 🏠 München

