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Background
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→ Exposure resulting in adverse
health outcomes

→ Impact on radiative forcing
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Objectives

▪Determine secondary aerosol formation
potential for aircraft emissions

▪ Investigate how photochemical aging
influences the aircraft exhaust aerosols: 

– Chemical and physical properties relevant
for health impact assessment

– Aerosol optical properties relevant for 
climate impact assessment
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Experimental design: combustor rig

• Combustor rig, incl. combustion chamber of a 

turbine engine 

! no compressor, no turbine, no lubrication oil

• Fuel: kerosene-based jet fuel (JP-8)

• One operation mode (idle, 7% nominal load) 

representing the average of a land- and takeoff 

cycle 
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Experimental design: photochemical 
aging in the Photochemical Emission 
Aging Flow Reactor (PEAR)[1]

[1] Ihalainen et al., 2019. A novel high-volume Photochemical 
Emission Aging flow tube Reactor (PEAR), Aerosol Science and 
Technology. DOI: 10.1080/02786826.2018.1559918

Dilution by 1:50 or

1:200

Hydroxyl radical (OH) 
exposures equivalent to 
1) ~2 days in atmosphere 

(DR 1:50)
2) 1-7 eqv.d (DR 1:200)

O3 + hv → O2 + O(1D)
H2O + O(1D) → 2OH

• 4 x 254 nm UV lamps
• Flow rate 120 lpm
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Fresh exhaust

Chemical-physical characterization

Online particle phase measurements (instrument)

• Particle number and size (SMPS, FMPS) 

• Particle mass and composition (HR-AMS, 

aethalometer, TEOM)

• Particle density (AAC-SMPS)

Online gas phase measurements

• HR-ToF-PTR : organic gas phase 

• FTIR: CO2, CO, SO2, NOx

Offline sampling of both PM and VOCs

→ Chemical composition by total carbon analysis 

→ Light absorption by UV-vis spectroscopy

→ Morphology (TEM & SEM)

Online characterization of 

the gas phase (NOx, SO2, 

CO2, CO (FTIR), gaseous 

hydrocarbons (FID))

Toxicological assessment (DR 1:50) 

Aged exhaust 
Dilution by

1:50 or

1:200

Experimental design

Air-liquid interphase

Cell exposures at different 

dilutions and doses

Online measurement of 

• reactive oxygen species

• oxidative potential 
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TEM

Fresh exhaust: bimodal distribution of  
mainly spherical, organic particles

SEM

Particle number distribution
(SMPS; mean ± SD over 12hrs)
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Fresh exhaust gases: CO2, CO, and 
organic gaseous species
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Organic gaseous pollutants altered by 
photochemical processing 
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(PTR-ToF-MS; average over 12h (fresh) or 16h (aged))
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Mass enhancement by a factor of ~300, 
organic aerosol becomes increasingly 
oxidized 

Average carbon oxidation state
𝑂𝑆𝐶 = 2 × 𝑂: 𝐶 − 𝐻: 𝐶

Dilution by 1:50: 
GMD ~ 80 nm
N ~ 2e16 #/kg

Dilution by 1:200: 
GMD ~ 50 nm
N ~ 6e16 #/kg

(AMS)

(SMPS)



UEF// University of Eastern Finland 11

Organic aerosol composition 
development typical for NOx –limited
conditions

(AMS)

[2] 

[2] Ng et al., 2011. Atmos. Chem. Phys., 11, 6465–
6474. doi:10.5194/acp-11-6465-2011
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Organic aerosol composition 
development typical for NOx –limited
conditions

12

[2] Ng et al., 2011. Atmos. Chem. Phys., 11, 6465–
6474. doi:10.5194/acp-11-6465-2011

[3] Hartikainen et al., 2020. Atmos. Chem. Phys., 
20, 6357–6378. doi: 10.5194/acp-20-6357-2020

[4] Hartikainen et al., 2023. J. Aerosol Sci., 171, 
106159. doi: 10.1016/j.jaerosci.2023.106159

[2] 

[4] 

[3] 

(AMS)



UEF// University of Eastern Finland

Aging increased light absorption by
the exhaust

11.6.2024 13

Absorption coefficients in raw 
exhaust conditions, measured by 
the aethalometer

• for ’brown carbon’ only 
(=attenuation fit to 660-950 nm 
subtracted)

mean ± SD of means of 4 h 
experiments (n=4) 
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Absorption by water soluble organic 
carbon (WSOC)
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➢ Mass absorption efficiencies (MAE) slightly higher 
for fresh WSOC

➢ Total absorption by combustion of 1 kg of fuel (A-EI) 
increases in line with the OC enhancement  

Thermal-optical
carbon analysis

F A

(UV-VIS Spectrometer, mean ± SD, n=4 for fresh, 3 for aged exhausts)
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Absorbance also by water insoluble
organic carbon

(UV-VIS Spectrometer, mean ± SD, n=4 for fresh, 3 for aged exhausts)

Sonication
in H2O

Step 1 Step 2
Sonication
in MeOH

Step 3
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Weakly (fresh) or very weakly (aged) absorbing brown carbon [5]

[5] Saleh, R. 2020. Curr Pollution Rep., 6, 90–104. DOI: 10.1007/s40726-020-00139-3 
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Fresh exhaust has warming, aged 
exhaust cooling impact on climate
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Conclusions

▪Photochemical aging led to notable formation of secondary 
organic aerosol: ×300 increase in particulate mass

➢ should be considered when assessing health impacts of 
aviation 

▪Continuous transformation of particle chemical composition, 
similarly to other organic aerosol sources

▪Formation of weakly absorbing organic aerosol

➢ shift from warming to cooling climate impact upon 
photochemical aging 
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