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SCENARIO
ICE is expected to be the powertrain of choice for 
heavy-duty engine category for many years to come, 
since HD vehicles are more challenging to electrify 
than smaller engines category.

Gas fuelled engines represents a valid solution 
toward decarbonization target, mainly if low or zero-
carbon fuels are considered (like biomethane or H2).

As a result, next Euro 7 regulations (approved on 
April the 12th, 2024) will drive substantial changes 
and bring new technologies to the market. 
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Meeting the severe PN limits will be one of the 
biggest challenges.

Estimated PN10 
impact +20%
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Four major sources of oil consumption in engines:

• through the piston rings

• crankcase ventilation

• valve stem seals

• turbocharger leakages
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Lubricant oil combustion is the main source of PN emission from gas engines

PN FROM GAS FUELLED HEAVY-DUTY ENGINES

Gas-containing oil is pushed into the combustion chamber by the pressure difference 
during high vacuum conditions between the cc (lower p) and the crankcase (higher p).

Reverse blow-by phenomenon scheme

Main mechanism: Reverse blow-by

* Froelund K. SAE Technical Paper 2000-01-2876. https://doi.org/10.4271/2000-01-2876.

*

• Low vacuum 
draws little oil

• Low oil 
consumption

• High vacuum 
draws much oil

• Poor combustion

• Low oil 
consumption

• Increase of oil on 
wall

• Much oil on 
wall

• Intense 
combustion

• High oil 
consumption

Low vacuum High vacuum Low vacuum
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APPROACHES FOR PARTICLE EMISSION CONTROL

Authors experience in particle emission control from NG engines:

q Improvement of engine ring-pack design 

q Optimization of oil formulation

q Particulate Filters 

• Guido C, et al. Energy 231 (2021) 120748, https://doi.org/10.1016/j.energy.2021.120748
• Napolitano, P. et al.  Atmosphere (2022), 13, 1919. https://doi.org/10.3390/atmos13111919
• Guido C. et al.Transportation Engineering 10 (2022) 100132. https://doi.org/10.1016/j.treng.2022.100132.
• Napolitano P. et al. Journal of Environmental Management 331 (2023) 117204

????

????
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EXPERIMENTAL SETUP AND TESTING PROCEDURE
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Engine specifications

Engine type 6 cylinders in line
Certification Euro VI
Displacement 5883 𝑐𝑚!

Valves per cylinder 2

Rated power and torque
150 𝑘𝑊 @ 2700 𝑟𝑝𝑚
750 𝑁𝑚@ 1500 𝑟𝑝𝑚

Compression ratio 10: 1

DMS500
PSDF/PN

Micro Soot Sensor:
Soot concentration

APC:
PN10
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§ Cold and hot start WHTC conditions
§ Post-processing examination, comparing the target and the 

recorded values of engine speed, load and power 
(regulation procedure).

§ Fixed limits on intake air T, humidity, fuel T and p.

WHTC TEST 
CYCLE

Definition and validation of a robust methodology

TAILPIPE MEASUREMENTS
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PN EMISSION EVOLUTION - INSIGHTS 

Ø Emissions spikes in correspondence 
of the transition from engine idle to 
acceleration phases.

Ø Very low emissions in other driving 
conditions à emissions spikes are 
main contribution to the total soot 
and PN.

Ø Source à lube oil leakage, favored 
by long idle phases.

Ø In the first 500s both PN and soot 
emissions are higher in Cold conditions

Ø Two possible reasons: the simultaneous 
increase of gas-phase pollutants (lower 
ATS efficiency in the initial low operation 
temperatures); higher contribution of 
hydrocarbons derived from the oil leakage 
and condensed along the exhaust line.

EFFECT OF STARTING CONDITION

EFFECT OF CYCLE EVOLUTION
WHTC hot 
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PN EMISSION EVOLUTION - INSIGHTS 

Ø Particle size distribution curve is “bimodal” with two main peaks at about 25 nm 
and 100 nm.

Ø The presence of particles with different sizes is due to the well known 
nucleation and accumulation phenomena which dominate the formation of 
respectively small and large particles.

Ø Same distribution curve shape for gasoline and natural gas engines; depending on 
the investigated application, the peaks may slightly vary.
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EFFECT OF RING PACK DESIGN OPTIMIZATION

~90%

Percentage of particle reduction 

EUVI 
prototype

The design of the whole ring pack greatly affects in-cylinder
oil consumption and also the reverse blow-by phenomena.

The compression ring design was improved working
on the reduction of the side clearance and volume behind the rings:

EUVI 
prototype

Ring pack 
optimization

Drop of particle concentration over the whole spectrum
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EFFECT OF LUBE OIL FORMULATION

REF OIL 1 OIL 2 OIL 3 OIL 4 OIL 5

Oil grade 10W-40 10W-40 0W-30 5W-30 5W-30 0W-40

% package/REF 1 0.5 1 1 1 1

KV100 (cSt) 13.49 13.8 9.601 9.747 9.499 13.53

Base oil viscosity (mm2/s) 6 8 4 4 4.5 3

Base oil group III III IV III V(75%) +  
IV(25%)

III

Reference oil: commercial SAE 10W-40

Ash content

1

10

100

EUVI
engine

~80%

Oil 5 is «out of 
tendency», showing the 
lowest PN and a 
relatively high pressure.

Base oil group
Base oil viscosity + polymers0.5

IV IV V(75%) +  
IV(25%)
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POTENTIALITY OF FILTER TECHNOLOGY

TWC

CPF

Ø Same substrate material and size

Ø Similar mean Pore size (MPS) for all
samples

Ø Two different wall thickness and porosity

Ø Different cell structure à Symmetric vs.
Asymmetric structure

Ø Impact of catalyst coating with same filter
structure and porosity

Ø Impact of a hierarchical microstructure
(modified surface porosity)

TWC CPF 1 CPF 2 CPF 3 CPF4

Wall Thickness (mil)   4 8 8 12 8

Cell Density (cpsi) 400 200 200 200 200

Cell Geometry Symmetric Symmetric Asymmetric Symmetric

Porosity (%) - ≧ 55% ≧ 55% 40÷50% 45÷55% 

MPS (µm) - 10÷15µm 10÷15µm 10÷15µm 10÷16µm

Catalyst Coating ✔ - ✔ - -

Hierarchical 
microstructure 

✔

1mil = 0.0254 mm

Cpsi = cells per square inch 

MPS = mean pore size
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POTENTIALITY OF FILTER TECHNOLOGY
PN and soot f i l trat ion ef f ic iency – Impact of star t condit ion

Ø PN and soot reduction over combined, hot and cold WHTC with different CPFs.

Ø PN reduction is similar regardless test conditions; despite higher raw PN in cold
WHTC, overall PN performance are comparable.

Ø Slightly larger difference can be observed on soot reduction even if overall
performances are still within tolerance band.

-85%
-81%

-86%

-99%

-87%
-83%

-91%

-98%

-75%
-68%

-73%

-98%

-80%
-75%

-79%

-96%
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POTENTIALITY OF FILTER TECHNOLOGY
Fi l ter back pressure impact on Fuel  Consumption 

Ø Despite different filter configurations, no significant variations in terms
of Fuel consumption over WHTC.

Ø Fuel penalty variation in the range of +/-0,25%.

Ø To be further investigated ash accumulation impact on back pressure
behaviour à Asymmetric structure could provide benefit in long term
accumulation.
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POTENTIALITY OF FILTER TECHNOLOGY
PN eff ic iency as funct ion of par t ic le s ize

Ø Particle size distribution traces show bimodal shape.

Ø All filters show similar filtration efficiency on both particle size ranges (~25nm and ~130nm); despite the smaller size current available filters are

capable to effectively trap the particles.

Ø Uncoated CPF1 and CPF3 have almost identical performances on both peaks.

Ø Coated CPF2 shows slightly lower performance probably due to MPS/porosity modification impacting trapping mechanism.

Ø CPF4 confirmed as the most efficient in all the size interval.

1st peak

2nd peak

-91%
-89%
-91%
-98%

-92%
-90%
-92%
-99%
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POTENTIALITY OF FILTER TECHNOLOGY
Dynamic PN and soot f i l trat ion behavior

Ø PN emissions is reduced in all the phases of WHTC: both during peak and when the emissions are low, i.e., when engine
operation in terms of speed and load is quasi-steady state. This evidence further supports the hypothesis of a continuous
filtration mechanism and particle oxidation in which no discontinuous regeneration event of the filter takes place.
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POTENTIALITY OF FILTER TECHNOLOGY
PN and soot f i l trat ion ef f ic iency – Impact of CPF characterist ics

TWC CPF 1 CPF 2 CPF 3 CPF4

Wall Thickness (mil)   4 8 8 12 8

Cell Density (cpsi) 400 200 200 200 200

Cell Geometry Symmetric Symmetric Asymmetric Symmetric

Porosity (%) - ≧ 55% ≧ 55% 40÷50% 45÷55% 

MPS (µm) - 10÷15µm 10÷15µm 10÷15µm 10÷16µm

Catalyst Coating ✔ - ✔ - -

Hierarchical 
microstructure 

✔

PN reduction 87% 82% 90% 98%

Ø Overall best filtration efficiency performance measured on CPF4
linked to the layer presence.

Ø Good performance for CPF3 probably due to high wall thickness
which maximise deep bed filtration capability.

Ø CPF1 and CPF2 have same substrate characteristics, but the presence
of catalytic coating on CPF2 seems to negatively impacting PN
filtration efficiency compared to CPF1.

Ø Possible hypotheses to explain CPF2 result are the following:

ü Non-uniform distribution catalyst washcoat within the pores
would lead to local high gas flow velocity resulting in higher PN
release.

ü Catalytic coating could produce faster particles oxidation
modifying particulate trapping mechanism since soot can
promote the competing process of condensation and adsorption
instead of nucleation.
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ü Particle emission from gas fuelled engines represents an aspect to be considered in view of next regulation compliance.
ü All the investigated strategies revealed effective in particle emission control:

-80%

MAIN REMARKS

ü The use of a diesel particulate filters on Euro VI Heavy-Duty NG engine generate considerable benefits in terms of PN 
emission revealing very interesting opportunities in view of the future emissions regulations.

ü Although experimental results are very promising, further improvements on filter materials and coating technology are 
probably required to increase safety margin and take into account wider testing conditions (e.g. real driving cycles in 
extended environmental conditions).

Guidelines for PN control in case of 
decarbonized fuels, like hydrogen.
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Thank for your attention

Chiara Guido – chiara.guido@stems.cnr.it
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