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ICE is expected to be the powertrain of choice for
heavy-duty engine category for many years to come,
since HD vehicles are more challenging to electrify
than smaller engines category.

Gas fuelled engines represents a valid solution
toward decarbonization target, mainly if low or zero-
carbon fuels are considered (like biomethane or H,).

As a result, next Euro 7 regulations (approved on
April the 12t,2024) will drive substantial changes
and bring new technologies to the market.

Meeting the severe PN limits will be one of the
biggest challenges.
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Lubricant oil combustion is the main source of PN emission from gas engines

B

Four major sources of oil consumption in engines:

through the piston rings

* crankcase ventilation
* valve stem seals

* turbocharger leakages

Main mechanism: Reverse blow-by

Gas-containing oil is pushed into the combustion chamber by the pressure difference
during high vacuum conditions between the cc (lower p) and the crankcase (higher p).
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Authors experience in particle emission control from NG engines:

O Improvement of engine ring-pack design

O Optimization of oil formulation

[ Particulate Filters

Guido C, et al. Energy 231 (2021) 120748, https://doi.org/10.1016/j.energy.2021.120748
Napolitano, P. et al. Atmosphere (2022), 13, 1919. https://doi.org/10.3390/atmos 3111919
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Guido C. et al. Transportation Engineering 10 (2022) 100132. https://doi.org/10.1016/j.treng.2022.100132.

Napolitano P. et al. Journal of Environmental Management 331 (2023) 117204
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Engine specifications

Definition and validation of a robust methodology
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EFFECT OF CYCLE EVOLUTION

Emissions spikes in correspondence
of the transition from engine idle to
acceleration phases.

Very low emissions in other driving
conditions = emissions spikes are
main contribution to the total soot

and PN.

Source = lube oil leakage, favored
by long idle phases.
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EFFECT OF STARTING CONDITION

> In the first 500s both PN and soot
emissions are higher in Cold conditions

> Two possible reasons: the simultaneous
increase of gas-phase pollutants (lower
ATS efficiency in the initial low operation
temperatures); higher contribution of
hydrocarbons derived from the oil leakage
and condensed along the exhaust line.
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. > Particle size distribution curve is “bimodal” with two main peaks at about 25 nm
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The design of the whole ring pack greatly affects in-cylinder
oil consumption and also the reverse blow-by phenomena.

The compression ring design was improved working

on the reduction of the side clearance and volume behind the rings:

Cylinder head
Combustion chamber
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» Same substrate material and size

» Similar mean Pore size (MPS) for all
samples

» Two different wall thickness and porosity

» Different cell structure = Symmetric vs.
Asymmetric structure

» Impact of catalyst coating with same filter
structure and porosity

» Impact of a hierarchical microstructure
(modified surface porosity)

TWC CPF1 CPF 2 CPF3 CPF4
Wall Thickness (mil) 4 8 8 12 8
Cell Density (cpsi) 400 200 200 200 200
Cell Geometry Symmetric | Symmetric | Asymmetric | Symmetric
Porosity (%) - = 55% = 55% 40+50% 45+55%
MPS (um) - 10+15um 10+15um 10+15um 10+16um
Catalyst Coating v - v - B}
Hierarchical v
microstructure

1mil =0.0254 mm

Cpsi = cells per square inch

MPS = mean pore size
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Combined: Cold+Hot
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» PN reduction is similar regardless test conditions; despite higher raw PN in cold

WHTC, overall PN performance are comparable.

» Slightly larger difference can be observed on soot reduction even if overall

performances are still within tolerance band.

[l

PN_10 AVL APC

[-1

PN_10 AVL APC

0.8

0.6

0.4

0.2 A

0.0 1

0.8 1

0.6 1

0.4

0.2 1

0.0 1

Only "Cold" tests

-75%

PN_10

Soot

| Only "Hot" tests |

75Y%

-83%

-87% -91%

-98%

PN_10

-80%

Soot

-79%

r 0.8

06

r 04

r 02

r 0.0

0.8

0.6

0.4

r 0.2

r 0.0

27 ETH Nanoparticles Conference

Soot [-]

Soot [-]



» Despite different filter configurations, no significant variations in terms
of Fuel consumption over WHTC.

» Fuel penalty variation in the range of +/-0,25%.

» To be further investigated ash accumulation impact on back pressure
behaviour = Asymmetric structure could provide benefit in long term
accumulation.
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> Particle size distribution traces show bimodal shape.

> All filters show similar filtration efficiency on both particle size ranges (~25nm and ~130nm); despite the smaller size current available filters are
capable to effectively trap the particles.

» Uncoated CPFI and CPF3 have almost identical performances on both peaks.

» Coated CPF2 shows slightly lower performance probably due to MPS/porosity modification impacting trapping mechanism.

» CPF4 confirmed as the most efficient in all the size interval.
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» PN emissions is reduced in all the phases of WHTC: both during peak and when the emissions are low, i.e., when engine

operation in terms of speed and load is quasi-steady state. This evidence further supports the hypothesis of a continuous
filtration mechanism and particle oxidation in which no discontinuous regeneration event of the filter takes place.
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» Overall best filtration efficiency performance measured on CPF4
linked to the layer presence.

» Good performance for CPF3 probably due to high wall thickness
which maximise deep bed filtration capability.

» CPFI and CPF2 have same substrate characteristics, but the presence
of catalytic coating on CPF2 seems to negatively impacting PN
filtration efficiency compared to CPFI.

» Possible hypotheses to explain CPF2 result are the following:

v" Non-uniform distribution catalyst washcoat within the pores
would lead to local high gas flow velocity resulting in higher PN
release.

v" Catalytic coating could produce faster particles oxidation
modifying particulate trapping mechanism since soot can
promote the competing process of condensation and adsorption
instead of nucleation.

TWC CPF1 CPF 2 CPF3 CPF4
Wall Thickness (mil) 4 8 8 12 8
Cell Density (cpsi) 400 200 200 200 200
Cell Geometry Symmetric | Symmetric | Asymmetric | Symmetric
Porosity (%) - = 55% = 55% 40+50% 45+55%
MPS (um) - 10+15um 10+15um 10+15um 10+16um
Catalyst Coating v - v - -
Hierarchical W,
microstructure
PN reduction 87% 82% 90% 98%
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v

Particle emission from gas fuelled engines represents an aspect to be considered in view of next regulation compliance.

v" All the investigated strategies revealed effective in particle emission control:
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v The use of a diesel particulate filters on Euro VI Heavy-Duty NG engine generate considerable benefits in terms of PN

v

emission revealing very interesting opportunities in view of the future emissions regulations.

Although experimental results are very promising, further improvements on filter materials and coating technology are
probably required to increase safety margin and take into account wider testing conditions (e.g. real driving cycles in
extended environmental conditions).
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Thank for your attention

Chiara Guido — chiara.guido@stems.cnr.it
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