

Innovative Gasoline Particulate Filters: A Comprehensive Analysis of Intrinsic High Filtration Rates and Operational Performance

D. Engelmann

27th ETH Nanoparticles Conference| ETH, Zürich, Switzerland

BFH, Laboratory for Drive Systems and Vehicle Emissions

What happens after 2035? ... there will still be ICEs to be found

Size distribution of the particles

Diesel engine

Soot peak: **80 nm**; 10⁶ - 10 ⁷ Ash peak: 10 nm;

Petrol engine

Soot peak: **40 nm**; 10⁵ - 10⁸ Ash peak: 10 nm;

AeroSolfd: Retrofit - GPF

The retrofit gasoline particulate filter (GPF)

Manufacturer: HJS

Substrate manufacturer: Corning

Substrate designation: DuraTrap GC 2.0

Cell design: 200/8

Testing new Filter Type (on Diesel) I

Comparing conventional and new filters

- Stationary operating point on test stand
- Slight variation in space velocity
- PF1:Conventional Filter Factory-new
- PF2: New factory-fresh and regenerated filter

Testing new Filter Type (on Diesel) II

Comparing the filtration efficencies

 Very rapid increase in filtration efficiencies (in about 3 min > 90%)

Rapid increase is reproducible

\rightarrow Promising candidate for the GPF

The test vehicles

AFHB Abgasprüfstelle und Motorenlabor Gwerdtstrasse 5, CH-2560 Nidau

The test vehicles

- 4 vehicles of the EU 6B generation
- 2 vehicles with intake manifold injection
- 2 vehicles with direct fuel injection
- For a detailed test campaign

Inspection of retrofitted vehicles

AFHB Abgasprüfstelle und Motorenlabor Gwerdtstrasse 5, CH-2560 Nidau

The scope of the measurements

- Initial measurement with new GPF and back measurement after endurance testing
- Comparative measurement with and without GPF
- Investigation of PN emissions, as well as limited gaseous pollutant emissions and CO2
- Investigation of non-limited secondary emissions
- WLTC, constant points (SSC), RDE (FTIR-PEMS)

Participation in the AeroSolfd project

AFHB Abgasprüfstelle und Motorenlabor Gwerdtstrasse 5, CH-2560 Nidau

 Investigation of the effects of GPF retrofitting on the emission behavior of 4 vehicles

• Evaluation of the NPTI - 1000 measurement campaign at TCS Biel

• Evaluation of monitoring data from test vehicles in the field with GPF in DE, ISR and CH

Results, an interim report I

(2)

Summary of input measurements with new GPF in WLTC :

- (1) PN reduction < 91%
- (2) Fuel consumption neutral
- (3) Slight influence on the limited pollutants (different for different vehicles)
- Influencing secondary emissions within the measurement accuracy

												\square	\square	<u> </u>	
							CVS / Horiba MEXA				F	EMS / Horiba	OBS-ONE		
LDV 147 Statistics			Distance	THC	CH4	NMHC	PN	со	CO2	NOx F	uel cons.	со	CO2	NOx	PN
			km	mg/km	mg/km	mg/km	#/km	mg/km	g/km	mg/km	I/100km	mg/km	g/km	mg/km	#/km
LAB	GPF	Average	23.2	46	5	40	1.8E+10	262	172.4	42	7.4	301	185.7	50	2.1E+10
		STDEV	0.0	1.5	0.7	2.1	1.1E+10	37.7	2.3	3.1	0.1	31.4	3.0	2.1	1.3E+10
	OEM	Average	23.2	39	4	35	1.9E+12	323	174.1	32	7.5	365	182.5	36	2.7E+12
		STDEV	0.0	2.6	0.2	2.4	1.4E+11	12.9	0.4	4.1	0.0	17.7	0.8	5.4	3.9E+11
	GPF FE (%)				99.0 <<									99.2 <<	
RDE	GPF	Average	95.5									269	168.4	32	4.2E+09
		STDEV	0.2				(7					30.1	2.2	2.6	1.9E+09
	OEM	Average	95.5				(3					202	173.0	29	1.5E+12
		STDEV	0.0									7.4	1.9	1.8	3.6E+11
		GPF FE (%)													99.7 <<
													<u> </u>	·	

Results, an interim report II

Summary of the input measurements with new GPF in the RDE:

- Particle reduction in the real drive too
- Emission improvement is CO2 neutral in the context of RDE measurements

Results, an interim report III

Summary of the input measurements with new GPF in the RDE:

- Particle reduction in the real drive
- Emission behavioral is comperable

"NPTI like" Scenario Testing

Abgasprüfstelle und Motorenlabor AFHR Gwerdtstrasse 5, CH-2560 Nidau

The scope of the measurements

- Gasoline vehicles can in principle be integrated into the NPTI framework.
- Sufficient detection width regarding PN to check the filters
- Measurement results sometimes differ between two measurements
- Completely "resolved" NPTI measurements are planned.

Conclusion so far

- The high degree of filtration without additional fuel consumption is a promising starting point for long-term testing.
- The possible influence of the use of GPF on pollutant emissions is promising and will/is further securitised
- The remeasurement of the vehicles with used GPF is pending and is planned for the second half of the year.

Merci & thank you for your attention

AFHB Laboratory for powertrain systems and emissions

Prof. Danilo Engelmann

Gwerdtstrasse 5 CH-2560 Nidau +41 32 321 66 80 danilo.engelmann@bfh.ch

Literature

[1] Boger, T., Glasson, T., Rose, D., Ingram-Ogunwumi, R. et al., "Next Generation Gasoline Particulate Filters for Uncatalyzed Applications and Lowest Particulate Emissions," SAE Technical Paper 2021-01-0584, 2021, doi: 10.4271/2021-01-0584.