

NRC.CANADA.CA

Measurement and impacts of the mass fraction of volatile coatings on soot

Joel C. Corbin¹, Timothy A. Sipkens¹, Arash Naseri², and Jason Olfert²

¹National Research Council Canada, Ottawa ON, Canada

²University of Alberta, Edmonton AB, Canada

ETH NPC, June 2024

National Research Conseil national de Council Canada recherches Canada

Atmospheric soot

Mixed soot from Adachi and Buseck, J Geophys Res 2010 Range of soots from Vander Wal et al. (2004)

Atmospheric soot... often mixed or "coated"

Mixed soot from Adachi and Buseck, J Geophys Res 2010 Wal et al. (2004) Range of soots from <u>Vander</u>

Soot morphology is crucial to understanding its light absorption

Soot climate warming is comparable to that of CO_2 ^[1]

[1] Ramanathan & Carmichael 2008; *[2; figures]* Scarnato et al., 2013

Quantifying soot coatings using R

Average per-particle BC mass

This talk: measure *R* using CPMA-SP2

Method to measure soot mixing state: CPMA-SP2

Naseri, Corbin and Olfert. AMT 2024

CPMA-SP2 procedure

Naseri, Sipkens, Rogak, Olfert JAS 2022

Single Particle Soot Photometer (SP2)

\rightarrow designed to measure rBC mass

SP2 signals for soot

SP2 modelling at the poster of *F. Liu, T. A. Sipkens, and J. C. Corbin* at this conference.

Corbin and Gysel-Beer, ACP 2019

CPMA-SP2 Results

Direct measurement of soot mixing state.

CPMA-SP2 Results

Direct measurement of soot mixing state.

CPMA-SP2 vs. SP2-LEO

Indirect "LEO" estimation biased towards thicker coatings, larger particles.

(f)

(a)

19

CPMA-SP2 Results

(Coating mass fraction)
$$f_c = c/(c + BC)$$
 VS. $R = c/BC$

R = Coating mass / soot mass

We need these measurements across the globe!

Thank you!

Joel.Corbin@nrc-cnrc.gc.ca

Code:

https://arashnaseri.github.io/empirical-cpma-tfer/

https://arashnaseri.github.io/pma-sp2-optimizer/

PMA-SP2 Optimizer

Overview

This simple web app is designed to estimate the optimal experimental parameters for tandem PMA-SP2 experiments. The app uses data from <u>Naseri et al. (2021)</u>.

Optimal experimental parameters are chosen as the minimum simulated error for a specific range about those chosen input parameters. For the number concentration, the range is up and down by a factor of sqrt(S), thus spanning an interval of half an order of magnitude. For time, the app considers any simulation with a time below that specified. In other words, if the optimal simulation occurs in half the time, that simulation is shown in the output. For the correlation, specifying the width of the m_p-m_{eff} distribution, the range is shown explicitly in the dropdown

Created by <u>Arash Naseri</u> and <u>Timothy Sipkens</u> at the University of Alberta. Open source code and data for this web app is available at <u>github.com/ArashNaseri/oma-so2</u>-

Inputs No. concentration (New) #/cm³ 3162.3 (1.4e+3 to 7.1e+3 #/cm³) Time (t) 1.2

Recommended

Lowest error of 978 simulations

No. of PMA

parameters

error 0.910

National Research Conseil national de Council Canada recherches Canada

NRC.CANADA.CA • 🖻 🎔 🎯

Backup

National Research Council Canada Conseil national de recherches Canada

Condensation + coagulation > variability in BC coating

Model results (*Fierce et al., N Comm 2016*) 25

DMA-SP2 method:

Unknown accuracy

Corbin et al., Nature npj Clim Atmos Sci 2019

Defining and measuring BC Light-Absorbing Carbon

Property	Soot BC	Tar brC		
Solubility ^{<i>a</i>}	Negligible solubility in common solvents			
Light absorption	300–1000 nm [detected as e	BC at NIR λ]		
Chemical state	Contorted graphene layers			
Carbon bonding	sp ² dominated			
Vapourization at ^b	~ 4000 K [EC , rBC]			
Produced by	Flame synthesis			
Morphology	alar al gazzanzaga			
Diameter ^c $[\mu m]$	0.02-0.2	0.03–0.3		

Corbin et al., Nature npj Clim Atmos Sci 2019

Defining and measuring Light-Absorbing Carbon

	LAC type						
Property	Soot BC	Char BC	Tar brC	Soluble brC			
Solubility ^{<i>a</i>}	Negligible	solubility in com	nmon solvents	Soluble			
Light absorption	300–1000 n	m [detected as e	BC at NIR λ]	300–600 nm			
Chemical state	Contorted gra	aphene layers	Amorphous	Distinct molecules			
Carbon bonding	sp ² dor	ninated	sp^2 and sp^3	sp^2 and sp^3			
Vapourization at^b	$\sim 4000{ m K}$	[EC, rBC]	$\sim 1000 \mathrm{K} [\mathrm{EC}]$	$< 600 \mathrm{K}$			
Produced by	Flame synthesis	Fuel-droplet pyrolysis	Partial pyrolysis	Oxidation, pyrolysis,			
Morphology	and the second s			O2N NO2			
Diameter ^c $[\mu m]$	0.02-0.2	1-5	0.03-0.3	0.05-0.2			

Corbin et al., Nature npj Clim Atmos Sci 2019

Defining and measuring Light-Absorbing Carbon

LAC type			Proper	Property			
Property	Soot BC •	Char BC 🔘	Tar brC 🔴	Soluble brC 🔴	relative to se	relative to soot BC	
Solubility ^a	Negligible solubility in common solvents Solu			Soluble			
Light absorption	300–1000 nm [detected as eBC at NIR λ]			300–600 nm			→ New
Chemical state	Contorted graphene layers		Amorphous	Distinct molecules			categorization
Carbon bonding	sp ² dominated		sp^2 and sp^3	sp^2 and sp^3		absorbing	
Vapourization at ^b	$\sim4000\mathrm{K}$ [EC, rBC]	$\sim 1000 \mathrm{K} [\mathrm{EC}]$	$< 600 \mathrm{K}$	†		carbon (LAC)
Produced by	Flame synthesis	Fuel-droplet pyrolysis	Partial pyrolysis	Oxidation, pyrolysis,			in the atmosphere.
Morphology	star and grand and gran			O2N NO2			
Diameter ^c [μ m]	0.02-0.2	1–5	0.03–0.3	0.05-0.2		-	
MAE $(370 \text{ nm})^d [\text{m}^2/\text{g}]$	11.1 ± 1.8	0.2–1.2	2.7–9.9	$\ll 0.1 - 6.0$			
MAE $(550 \text{ nm})^d [\text{m}^2/\text{g}]$	7.5 ± 1.2	0.2–1.3	1.1-4.1	$\ll 0.1 - 1.2$	T		
MAE $(880 \text{ nm})^d [\text{m}^2/\text{g}]$	4.7 ± 0.8	0.2–1.5	0.2–1.8	n.a. ^e	†		
AAE $(370, 530 \text{ nm})^d$	0.8–1.2	-0.3 to -0.1	1.7–6.5	2–7	Ţ=	_	
AAE $(370, 950 \text{ nm})^d$	0.8–1.2	-0.2 to 0.0	3.5–4.0	n.a. ^e		-	
AAE $(880, 950 \text{ nm})^d$	0.8–1.1	-0.3 to 0.0	2.5-6	n.a. ^e	<u> </u>	-	20
					0.01 0.1 1	10 100	30

Soot coating experiments $\rightarrow E_{abs}$ 1...10

SP2

Modified from M. Gysel, PSI Switzerland

0.05-

0.00

-16

-8

0

Time [µs]

16

8

-16

-8

0

Time [µs]

0.1

0.0

33

16

8

0.1

0.0

-16

-8

0

Time [µs]

16

8

Anomalous SP2 signals: identified as <u>tar</u>

Upper panels Incandescence signal *I*(*t*) Middle panels Scattering signal *S*(*t*) Beam profile Split detector position

Lower panels
 Scattering cross section C(t)

Identification as tar described in Corbin et al. [Nature npj Climate & Atmos. Science 2019]

Evaporating, non-incandescing tar [1/2]

 $578 \text{ of } 2.5 \times 10^5$ particles partially evaporated.

False negatives not quantified.

Evaporating, non-incandescing tar [2/2]

Overall trends show similar behaviour.

All normalized to C(-3%).

Incandescing tar identified in combination with light-scattering analysis

37

CPMA-SP2 slower than SP2-LEO

Variability in atmospheric E_{abs}

Yu Wu, Tianhai Cheng et al., EST 2012

Cappa et al., Science 2012; JGR 2019.

(Coating mass fraction) f_c vs. **R** (coating/BC ratio)

Severe X-axis bias from bulk measurements of R. CPMA-SP2 provides a solution.

Coating mass ratio

Corbin, Sipkens, Moallemi, Olfert et al., in prep

Cappa et al., Science 2012; JGR 2019.

Cappa et al., Science 2012; JGR 2019.

Fierce 2020

