

The ubiquitous nature of lubrication oil in aero gas turbine exhaust

Z. C. J. Decker¹, P. A. Alpert¹, J. G. Slowik¹, M.
Ammann¹, L. Durdina², J. Edebeli², C. Spirig², J.G. Anet²,
F. Ungeheuer³, A.L Vogel³, A. S. H. Prévôt¹, M. Gysel-Beer¹ and <u>B. T. Brem¹</u>

¹Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland ²Centre for Aviation, ZHAW Zurich University of Applied Sciences, 8401 Winterthur, Switzerland ³Institute for Atmospheric Sciences, Goethe-University Frankfurt, Frankfurt am Main, 60438, Germany

Aviation- a massive source of ultrafine particles (UFPs)

PSI

7 taxiing aircraft in the photo emit together ~10¹⁵ particles per second \approx 10'000 km of driving with a EURO6 diesel car¹

Emitted particles are ultrafine (mode diameters \approx 15 nm)!

Current number of passenger jets (~21'000) will double in the next 20 years. More than half of the current fleet will still fly in 2050!²

²IATA Outlook

Aviation turbine oil properties and emissions

Oil properties:

- Composed of synthetic pentaerythritol esters (95%) with small amounts of specialized performance additives such as e.g. tricresyl phosphate (TCP)
- Designed for operational stability over a large temperature range between -40 and 204 °C
- Boiling point ~230 -250 °C
- Density ~ 1 g/cm³

Oil emissions:

- Engine oil systems ingest air in the bearing cavities, and thus a breather/ air-oil separator is installed to remove air
- The breather is vented to the outside air → source of emissions
- Location and type of breather vent depends on engine manufacturer/ model and has implications for emissions:

- Manufacturer allowed oil consumption limit
 0.3 -0.5 L/hr
- Emission indices reported in the range of 2-12 mg/kg¹
- Oil constituents found 4km downwind of Frankfurt airport²

¹Yu et al.,2010, Environmental Science and Technology 44(24):9530-4 ²Ungeheuer et al., 2022, Commun Earth Environ 3, 319

Objectives of this study

We are investigating this step in the evolving plume (0.2 to 1 s after emission) with the following research questions:

- 1. Can oil emissions be measured in all engines?
- 2. Is there a thrust dependence in oil emissions and composition?
- 3. Is the composition particle size dependent?

Measurement setup

Engine	Airframe	No. of Tests	Engine Oil	SR Technics reported oil consumption (L/h)
CFM56-7B variants	Boeing 737	4	3x Mobil Jet II, 1x Turbonycoil 600	0.1 – 0.35
PW4000-94" variants	Boeing 767	2	2x Mobil Jet II	Non- measurable - 0.12
PW4000-100" variants	Airbus A-330	1	Mobil Jet II	0.15

Oil markers can clearly be identified in aircraft exhaust

Tricresyl Phosphate

- Additional Masses observed at SRT with assigned formula Ο
- Additional Masses observed at SRT with unknown formula 0

Decker et al. in preparation 10.06.2024

H₃C

Oil emissions experience gas to particle partitioning

Lighter oil esters have not fully condensed into PM phase → heavier long chained esters start to dominate the signal

Decker et al. in preparation

Smaller particles contain more low-volatility oil esters

- The fraction of heavy esters is greatest for the smallest particles while the fraction of lighter esters increases with particle size
- Suggest that heavier esters can potentially independently nucleate early in the plume and serve as condensation sink

Decker et al. in preparation

Offline analysis of impactor samples also indicates a widespread presence of oil

Swiss Light Source

Scanning Transmission X-ray Microscopy coupled with Near-Edge Xray Absorption Fine Structure Spectroscopy (STXM/NEXAFS)

Oil markers are detected online and *in situ* near Zürich airport

Time (Local)

12 PSI Center for Energy and Environmental Sciences

21:45

A .then .

Summary and Conclusions

- Lubrication oil is commonly observed in aircraft exhaust while direct quantification in exhaust remains an analytical challenge → Estimated emission indices range from 0.05 to 0.3 g/kg fuel (based on consumption data) which is at par or even higher than soot emissions
- Oil emissions exhibit a thrust dependence with higher concentrations at higher thrusts
- Gas to particle partitioning plays a role in the early stage of the plume
- Size resolved measurements indicate lower volatile esters at smaller particle sizes
- Oil spectral signatures are observed in all offline samples
- Oil markers such as TCP can be detected online and *in situ* 1km away from the runway at Zürich airport

Acknowledgements:

Swiss Federal Office of Civil Aviation (FOCA) SFLV 2020-080 Aviation Plume PROPeRtIes AT point of Exposure (APPROPRIATE) and AGEAIR 2 (SFLV 2018-048). Deutsche Forschungsgemeinschaft (DFG; German Research Foundation) (grant no. 428312742 (TRR 301))

Appendix: Particle-phase molecular composition by EESI mass spectrometry

- Extractive ElectroSpray Ionization (EESI)
- Measurement of aerosol chemical composition
- Captures whole molecules, in contrast to Aerosol Mass Spectrometry

- High mass resolution (m/Δm > 8000)
- High time resolution (1 Hz)
- Sodium ion added to analyte molecule

