

Liberté Égalité Fraternité

maîtriser le risque pour un développement durable

Primary and secondary emissions of pellets, logwood, and oil residential heating appliances: emissions factors, secondary particle formation and particle effective density

<u>A. Albinet</u>, C. Degrendele, S. Collet, A. El Mais, B. Temime-Roussel, B. D'Anna and H. Wortham

alexandre.albinet@ineris.fr

27th ETH Nanoparticles Conference, 12th June 2024

Biomass burning: a strong impact on air quality

Sector contributions to PM emissions in Europe

Residential wood combustion

⇒ Significant source of PM and black carbon (BC) in Europe

Spatial distribution of the OC emissions due to residential wood combustion in 2005

(Denier van der Gon, 2015)

Primary and secondary biomass burning emissions

- ✓ Large emissions of BC and primary organic aerosols (POA)
- ✓ Large emissions of volatile and semi-volatile organic compounds (VOCs and SVOCs)
- \Rightarrow Significant formation of secondary OA (SOA)

Primary and secondary biomass burning emissions

- Large emissions of BC and primary organic aerosols (POA)
- ✓ Large emissions of volatile and semi-volatile organic compounds (VOCs and SVOCs)
- \Rightarrow Significant formation of secondary OA (SOA)
 - Large primary emissions and SOA formation for old logwood stoves
 - Lower primary emissions and SOA formation for modern logwood and pellets stoves

Only few studies about the secondary particle formation from pellets appliance emissions (n \approx 8)

Primary and secondary wood combustion emissions

Bertrand et al., 2017

Main objectives

- 1) Evaluation of primary and secondary emissions from different modern pellets stoves and boilers
 - a) Impact of working outputs
 - b) Impact of pellets composition (softwood vs hardwood)

2) Comparison with primary and secondary emissions from residential heating appliances using other fuels (logs and oil)

Residential heating appliances tested

- 3 × Pellets Wood Stove (PWS1 8 kW; PWS2 8 kW; PWS3 9 kW)
- 3 × Pellets Wood Boiler (PWB1 24.5 kW; PWB2 22 kW; PWB3 21.7 kW)
- 1 × LogWood Stove (LWS 7 kW)
- 1 × LogWood Boiler (LWB 30.5 kW)
- 1 × Condensing Oil Boiler (OB 24 kW)

Experimental conditions

Outputs

Pellets: 3 conditions (PWS1 and PWB1)

- Reduced (30 %)
- Intermediate (50 %)
- Nominal (100 %)

Fuels

Pellets: 2 types

- Softwood (conventional)
- Hardwood (GRAMIX project) (PWS3 and PWB2)

Logwood: 2 conditions

- Nominal
- Reduced

Oil: 1 condition

Nominal

Logs

- Beech or Oak (LWS)
- Wooden charm (LWB)

Experimental conditions

Outputs

Pellets: 3 conditions (PWS1 and PWB1)

- Reduced (30 %)
- Intermediate (50 %) (PWS2 and PWS3)
- Nominal (100 %)

Fuels

Pellets: 2 types

- Softwood (conventional)
- Hardwood (GRAMIX project) (PWS3 and PWB2)

Logwood: 2 conditions

Oil: 1 condition

Nominal

Dysfunction observed

Logs

Nominal

Reduced

- Beech or Oak (LWS)
- Wooden charm (LWB)

Outputs

Pellets: 3 conditions (PWS1 and PWB1)

- Reduced (15 %) (PWB3)
- Intermediate (50 %)
- Nominal (100 %)

Fuels

Pellets: 2 types

- Softwood (conventional)
- Hardwood (GRAMIX project) (PWS3 and PWB2)

Experimental conditions

Logwood: 2 conditions

- Nominal \Rightarrow boiler
- Reduced

Oil: 1 condition

Nominal

Logs

- Beech or Oak (LWS)
- Wooden charm (LWB)

11

n = 3-14 experiments by tested condition

BC emissions

2 measurement methods

- Equivalent BC (eBC) : aethalometer, absorbance at 880 nm
- EC : thermo-optical method following filter sampling

No possible direct comparison

OB, large emissions \Rightarrow dysfunction

Large emissions for PWB3 (15%) and PWS2 \approx LWS

PWB << LWB \approx PWS (except PWS2) << LWS

Reduced/Intermediate output > Nominal output for pellets

Reduced output \approx Nominal output for LWS

PM emission factors (EF): primary vs aged

Aged PM > or >> Primary PM

Secondary particles formation

- ✓ OB: High formation
- ✓ Pellets appliances: Low formation
- ✓ LWB and LWS: Low to very high formation (reduced output)

PM number emission factors (EF): primary vs aged

▶ of PM number with aging (except LWS in reduced output)

Condensation processes of semivolatiles species and PM coagulation within the PAM-OFR

PM size distribution, density and morphology: primary vs aged PWS1 Nominal Intermediate Reduced 250 r 250 2.5 x 10⁶ x 10⁶ LWS NO, Primary Logwood stove 200 200 LWS NO, Aged 150 150 150 LWS RO, Primary Aerosol effective density 2.0 LWS RO, Aged 100 100 100 50 50 50 dN/dlogDp (#/cm³) Ω 1.5 2 4 6 2 4 6 2 4 6 2 46 2 46 2 46 100 10 100 10 100 1000 10 1000 1000 LWS Primary 1.0 Aged Nominal Reduced 250 250 10⁶ × 10⁶ 200 200 × 0.5 150 Shift towards larger 150 100 100 PM with aging 100 200 300 400 50 50 Aerosol mobility diameter (nm) 2 46 2 4 6 2 4 6 2 46 10 100 1000 10 100 1000 Diameter (nm) **7** PM density with aging Secondary PM Primary Aged PM Output ΡM (nucleation) Logwood stove Nominal 0.8 1.5 0.5 Reduced 1.2 1.3 1.5 **Pellets stoves** Nominal/Intermediate 1.2 1.6 nd Aging Reduced 1.0 1.1 nd Logwood boiler Nominal 1.4 1.5 1.0 **Pellets boilers** Nominal/Intermediate/Reduced 1.9 1.9 nd

Reduced (15 %)

Nominal

1.0

0.8

Oil boiler

1.0

1.2

Soot + few tarballs

Soot + Numerous individual tarballs or agregates

nd

1.5

Secondary PM formation potential

LWS > OB > LWB > PWB and PWS

Secondary PM formation by nucleation processes

LWS > or >> PWB and PWS

OB: High SO₄ formation (\approx 50 % of PM)

 \Rightarrow SO₂ converted in sulfate

Significant nitrate fraction for LWB while NO_x emissions \approx other appliances \Rightarrow nitro organic species

EF nucleation processes \approx EF primary emissions

EF nucleation processes < EF aged emissions (× 2 - 10)

Significant heterogeneous reactivity processes (gas/particles)

LWS nominal \approx OB

George et al., 2015

Secondary PM formation by nucleation processes: effective density

Conclusions

Black carbon

Emissions of pellets appliances 10-100 times < logwood and oil appliances

Emissions +++ pellets boiler in very reduced output (15 %) \Rightarrow need of restricting the operating range by the manufacturers

1/3 pellets stoves \Rightarrow large emissions \approx logwood stove \Rightarrow high heterogeneity in the emissions \Rightarrow further works requested

Secondary PM

```
Pellets appliances \Rightarrow Low formation (× 1 - 2)
```

Logwood appliances (notably stove) \Rightarrow High formation in <u>reduced output</u> (up to × 16, OM), and comparale to pellets appliances in <u>nominal output</u> (× 1-3), larger emissions than pellets appliances anyway

Oil boiler \Rightarrow High formation (× 5 - 6, OM and SO₄) but low primary emissions

Softwood pellets

No impact on primary, secondary PM and BC but **7** in CO and, in a lesser extend, in total VOCs and NO_x

PM effective density and morphology

Changes in the effective densities (\neg) and morphologies (larger PM, soot \Rightarrow tarballs) of the PM due to aging Leskinen et al., 2023

Thank you for your attention !

alexandre.albinet@ineris.fr

Abd El Rahman EL MAIS, Nicolas KAROSKI, Adrien DERMIGNY, Vincent FUVEL, Yannick DUPUIS, Ahmed ABIDA, Christophe RICHET, Medhi DIONIGI, Serge COLLET, Arnaud PAPIN, Ahmad El MASRI, Serguei STAVROVSKI, Farid AIT BEN AHMAD, Nathalie BIANCHINI, Valérie MINGUET, Rachel GEMAYEL, Robin AUJAY-PLOUZEAU, Céline FERRET, Alexandre ALBINET

Céline DEGRENDELE, Brice TEMIME-ROUSSEL, Grazia Maria LANZAFAME, Barbara D'ANNA, Henri WORTHAM

+

Nicolas DANTHONY, Pedro JORQUERA-FERRAT

ADEME AGENCE DE LA TRANSITION ECOLOGIOUE

Isabelle AUGEVEN-BOUR, Manon VITEL

