26th ETH-Conference on Combustion Generated Nanoparticles

Effects of GPF Substrate Structure on Pressure Drop and Filtration Efficiency

Kazuhiro Yamamoto (Nagoya University)

Session 5: Particle emissions control of combustion engines (Part B)

Outline of Presentation

- (1) Introduction
- (2) Numerical method
 - 1. Approach for initial filtration efficiency
 - 2. Substrate by X-ray CT (original) and three samples
- (3) Results
 - 1. Effects of substrate structure on flow (no soot)
 - 2. Initial pressure drop and filtration efficiency
 - 3. Effects of substrate structure on soot filtration
- (4) Summary

GPF (Gasoline Particulate Filter)

- Reduction of gasoline soot from GDI
- Honeycomb structure with alternate closure of inlet and outlet channels
- Similar to DPF, but different conditions
- For less space, catalyzed GPF is preferred= GPF + thee-way catalyst (four-way)

Plachá et al., Chem Eng Sci, (2020)

Exhaust gas of GDI

- Low soot concentration
- > Smaller diameter
- High temperature

Less chance to form soot layer on GPF

Initial Δp_0 and filtration efficiency η_0 are more important

Once soot is trapped, its filtration efficiency is not the initial value. Thus, it is difficult to estimate η_0 experimentally and numerically.

Previous Study and Objectives

Previous simulation of filtration

- Lattice Boltzmann method was used
- Soot deposition on filter wall was realized, which largely affects the filtration efficiency (η)
- η depends on soot size and the exhaust gas velocity, which are related with soot layer formation

Objectives of present study

- For evaluating η_0 , an approach by Plachá et al. is adopted
- By using filters with **similar** substrate structure, the pressure drop and filtration efficiency are investigated
- Information on catalyzed GPF is obtained

Numerical Domain and Conditions

- Numerical domain: $584\mu m(X) \times 120\mu m(Y) \times 120\mu m(Z)$ Grid size = $2\mu m$
- ➤ Numerical conditions: Inflow velocity = 2 cm/s Exhaust gas temperature = 500 °C Soot size = 60 nm

As for the filtration, **Brownian** diffusion and interception effects were considered. By neglecting the soot layer formation caused by soot deposition, the saturated value was set to be the initial filtration efficiency.

$$\eta = \frac{\text{Trapped soot}}{\text{Trapped soot} + \text{Soot leakage}}$$

Original Substrate and Three Samples

Original substrate by Xray CT ($\varepsilon = 0.630$)

Sample 2: Thin ($\varepsilon = 0.739$)

Sample 3: Front thick rear thin (ε = 0.655)

Combination of thick and thin (Front thick rear thin)

- By decreasing porosity (ε) in the upstream region (X<300μm), the filtration efficiency can be **enlarged**
- By increasing ε in the downstream region (X>300 μ m), Δ P can be smaller

Distributions of Porosity

Substrate Structure

Distribution of porosity

Combination of thick and thin (Front thick rear thin)

- By decreasing porosity (ε) in the upstream region (X<300μm), the filtration efficiency can be **enlarged**
- By increasing ϵ in the downstream region (X>300 μ m), Δ P can be smaller

Flow Field and Maximum Velocity

Profiles of velocity across the filter wall

Sample 1: Flow becomes narrower, and some channels disappear

Sample 2: Width of the flow is wider, with lower velocity

Sample 3: The **higher** velocity upstream, the **lower** velocity downstream

Maximum Velocity and Pressure Change

- As the porosity is smaller, the maximum velocity is increased
- In case of front thick rear thin, the initial pressure drop is slightly larger

Pressure Drop and Filtration Efficiency

- \triangleright Between the initial pressure drop and filtration efficiency, a **linearity** is roughly observed (tradeoff between η and Δ P)
- > By using combination of front thick and rear thin, the relationship between initial filtration efficiency and the pressure drop is **shifted**

Flow Fields with Streamline (ρ_s=1.0g/L)

- As the porosity is lower, more soot is deposited in the upstream region
- In case of front thick rear thin, the pressure drop is larger than the original substrate, but it is smaller than thick filter.

Deposited Soot Mass and Pressure Drop

- As the porosity is lower, more soot is trapped
- In comparison with the thick filter, the pressure drop of front thick rear thin is reduced when the amount of deposited soot is the same

Summary

- Simulations of GPF were conducted by the lattice Boltzmann method
- Substrate structure by X-ray CT and three more samples were used
- Approach for evaluating the initial filtration efficiency was explained
- Pressure drop and filtration efficiency were discussed
- More simulations will be needed for optimization of substrate structure

END