Trace gases: HNO₃ NH_3 CO_2

Aerosol pH is an overlooked driver of airborne influenza and coronavirus inactivation **Tamar Kohn**

рΗ

Recommended methods to prevent airborne transmission

Can we achieve better health protection by inactivating viruses while airborne? How?

Some hints

Atmospheric sciences

Ambient aerosol particles can be acidic

Kakavas et al. (2021)

Virology

Trace gases: HNO₃ NH₃ CO₂

Q1: What is the pH of an exhaled aerosol particle?

pН

Expiratory aerosol particles are dynamic and complex

Relative humidity in the body: ~100% (37 °C)

Relative humidity in indoor air: ~20-70% (20 °C)

Concentration of solutes Gas exchange

Properties depend on

- o RH
- Matrix composition
- Time since exhalation
- Surrounding air composition

o ...

Respiratory aerosol model

- 1. Mass transfer
- 2. Heat transfer

Respiratory aerosol model

- 1. Mass transfer
- 2. Heat transfer
- 3. Chemistry
- 4. Kinetics (diffusion of H_2O and ions)
- 5. Deliquescence and efflorescence
- 6. Charge neutrality

Synthetic Lung Fluid (SLF)

Aerosol pH in typical indoor air

Aerosol pH in typical indoor air

Aerosol pH in typical indoor air

Q2: What are the inactivation kinetics of respiratory viruses at aerosol pH?

pН

Virus inactivation times in SLF from pH 2 to 7.5

assay

Virus inactivation times in SLF from pH 2 to 7.5

Acid-sensitivity depends on virus entry mechanism

Figure from Cohen, (2016) Biophysical journal, 110(5), 1028-1032.

Acid-induced changes in influenza virus prevent entry

• HA change occurs in acidic aerosol conditions within 10 s, outside the host

• Virus becomes unable to attach to host cell and cause infection

Back to the respiratory aerosol model

- 1. Mass transfer
- 2. Heat transfer
- 3. Chemistry
- 4. Kinetics (diffusion of H2O and ions)
- 5. Deliquescence and efflorescence
- 6. Charge neutrality
- 7. Virus inactivation kinetics

IAV is inactivated in expiratory aerosol...

...but SARS-CoV-2 is not

Trace gases: HNO₃ NH₃ CO₂

Q3: Can the inactivation time be modified by controlling aerosol pH?

pН

%

Options for aerosol pH control

Options for aerosol pH control

Supply fresh air! Remove ammonia! Possibly enrich acids! Careful with filtration!

Pros and cons of air treatment methods

ال			6
Air Treatment Method	Pros	Cons	Research Needs
Fresh air supply (ACH)	Supplies acid from outdoors, removes NH ₃	Increased energy costs	Trade-off between energy use and air quality maintenance
Filtration (e.g., HEPA filters) of fresh or recirculated air	Removes allergens, PM and chemicals	Likely removes HNO ₃ and elevates aerosol pH	Effect of filters on volatile acids and bases and ultimately aerosol pH
NH ₃ scrubbing	Remove volatile base, but also other air constituents	Not effective for pH- inactivation of coronaviruses	Currently mainly used at large- scale (farms), adaptation to smaller scale applications needed, e.g., for gyms, class rooms
Acid addition	Effective even against quite acid-resistant viruses (SARS- CoV-2)	Low acceptability? Effects on health and infrastructure are unknown	Identify innocuous, effective acids; dispensing and control system needed

Conclusion

pH control can be an effective strategy to limit the transmission of a disease in indoor environments such as hospitals and schools; it is possibly more effective than ventilation (though you should do that, too!)

Conclusion

pH control can be an effective strategy to limit the transmission of a disease in indoor environments such as hospitals and schools; it is possibly more effective than ventilation (though you should do that, too!)

Trace gases: HNO₃ NH₃ CO₂

Understanding the physics and chemistry of the environment is extremely important for understanding the fate of biological contaminants.

Thank you!

Beiping Luo Aline Schaub Irina Glas Liviana Klein **Shannon David Oscar Vadas** Marie Pohl Nir Bluvshtein **Ghislain Motos** Kalliopi Violaki Walter Hugentobler Athanasios Nenes **Ulrich Krieger** Silke Stertz **Thomas Peter**

Many images created in Biorender