

LABORATORY OF APPLIED THERMODYNAMICS

Anastasios Kontses

E. Saltas, A. Raptopoulos-Chatzistefanou, Z. Toumasatos, L. Ntziachristos, Z. Samaras

Urban and cold-start phase particle emissions of a gasoline hybrid and a CNG vehicle

25th ETH Conference on Combustion Generated Nanoparticles June 21-23, 2022

Contents

- Introduction on urban and cold-start emissions
- **Methodology** (vehicles tested, test cycles, instrumentation)
- Results and discussion:
 - Emissions over the different test phases
 - Cold-start contribution
 - Cumulative SPN₂₃ emissions
 - Cold vs Hot start tests
 - SPN₂₃ vs SPN₁₀
- **o** Summary and conclusions

Introduction

• **Road transport contribution in EU**^{1,2,3}:

- Up to 39% (11% on average) on urban PM_{2.5}
- The highest contributor on ultrafine particles in big cities
- **Daily mobility** in different EU countries:
 - Urban trips⁴:
 - 41-99% of all trips <300km</p>
 - 24-88% of covered distance for trips <300km</p>
 - **Cold start**⁵: 17-38% of all trips are started under cold conditions (after >8h parking)

→ Urban and cold-start phase (0-5 minutes) emissions are of high importance

¹ EEA, <u>Air quality in Europe – 2020 report</u>, ² Thunis P. et al., 2021, <u>Urban PM_{2.5} Atlas - Air Quality in European cities</u>, ³ Lorelei de Jesus A. et al., 2019, <u>Ultrafine particles</u> and PM_{2.5} in the air of cities around the world: Are they representative of each other?, ⁴ Eurostat, 2021, <u>Passenger mobility statistics</u>, ⁵ Weiss, M., 2017, <u>Including cold-start</u> emissions in the Real-Driving Emissions RDE test procedure

Methodology

Vehicles:

	Vehicle 1	Vehicle 2	
Fuel	Gasoline Hybrid	CNG	Gasoline (back-up)
Fuel Injection	PFI	PFI	GDI
Engine Capacity [cc]	1798	999	
Engine Power [kW]	72 + 53 el.	66	
Aftertreatment	TWC	TWC	
Euro standard	Euro 6d	Euro 6d-temp (type- approved as monofuel CNG)	
Segment	C-SUV	В	
Year of man.	2019	2019	
Mileage [km]	3k	9k	

Abbreviations: CNG: compressed natural gas, PFI: port fuel injection, GDI: gasoline direct injection , TWC: three-way catalyst

Tests and measurement equipment:

- On-road tests with PN-PEMS (portable emissions measurement system)
- Chassis dyno with PN-PEMS and laboratory PN equipment

Notes:

- PN emissions presented in the following slides refer to SPN (solid particle number) with a cut-off size at 23 and 10nm
- The Euro 6 SPN₂₃ limit of 6×10¹¹ p/km is provided for comparison reasons although not applicable to the studied vehicles

Emissions over the different test phases

- High variation within each test phase \rightarrow wide range of Ο driving/test conditions
- The highest emissions during urban phase Ο
- **CNG: overall lowest emitter,** well below 6×10¹¹ p/km Ο
- GDI and hybrid PFI at similar levels, exceeding 6×10^{11} Ο p/km even in total trip results

\rightarrow Urban and cold phase emissions significantly higher than total trip:

	Cold/Urban	Cold/Total	Urban/Total
Hybrid PFI	3.0	5.9	2.0
GDI	1.9	5.3	2.9
CNG	2.3	4.3	1.9
Average	2.4	5.2	2.3

Urban

-----EU6 limit (lab, DI only)

CNG PFI

Cold start contribution in relation to trip distance

- High cold start effect in short trip distance
- Cold start contribution on cumulative SPN₂₃:
 - Up to 95% in dynamic short trips (US06)
 - Up to 75% in short urban trips
 - Up to 30% in full RDE trips
- CNG: lowest cold-start contribution in all cases

Note: cold start contribution refers to the cumulative SPN_{23} emissions [p] over the cold start period (0-5 min) compared to the total trip cumulative SPN_{23} emissions [p].

Cumulative SPN₂₃ emissions – vehicles comparison

Cold-start TfL on dyno

- The highest cold start contribution in GDI, the lowest in CNG
- \circ $\,$ Steep emissions increase during the first acceleration $\,$
- Long plateaus in Hybrid PFI due to engine-off events (initial battery SOC: 27%)

Cold vs Hot start tests

Cold and hot-start US06 on dyno, Vehicle 2

- Difference between cold and hot start cycles built mainly in the **first vehicle acceleration**
- CNG: much smaller cold-hot difference compared to GDI. Emissions also significantly lower

SPN_{23} vs SPN_{10}

Average of all lab tests

- Low SPN₁₀/SPN₂₃ ratio in cold start, high in urban
- Highest ratio in CNG in all cases
- \circ SPN₁₀: Small effect on compliance with 6×10¹¹ p/km, only in hybrid PFI

- O Urban and cold-start phase (typically occurs at urban areas) contribute significantly to vehicle SPN emissions, especially in short trips → next regulation should address this issue
- High SPN increase during the very first acceleration especially under dynamic driving
- \circ No significant difference between SPN_{23} and SPN_{10} emissions during cold start phase
- Ideas for **future work**: If/how these observations may change:
 - if different cut-off sizes (e.g. SPN_{2.5}) or total (solid+volatile) particles are evaluated
 - if these vehicles are equipped with particulate filters

Thank you for your attention. Any Questions?

> Anastasios Kontses, PhD <u>akontses@auth.gr</u> Scopus Profile: <u>57190686584</u>

This research is co-financed by Greece and the European Union (European Social Fund- ESF) through the Operational Programme «Human Resources Development, Education and Lifelong Learning» in the context of the project "Reinforcement of Postdoctoral Researchers - 2nd Cycle" (MIS-5033021), implemented by the State Scholarships Foundation (IKY).

Operational Programme Human Resources Development, Education and Lifelong Learning

Co-financed by Greece and the European Union

