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Motivations

Air Pollution

* Atmospheric visibility
 Climate change
 Cloud formation

Health

* Deposition in inhalation system
 Carcinogenic polycyclic aromatic hydrocarbons

Combustion device

* Loss of efficiency
* High maintenance
» Radiative heat transfer-heat transfer via radiation

Unravelling mechanisms of particle nucleation improves our ability to
control Particulate Matter (PM) emissions 2



Challenges
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Carbone et al.(2016), Aerosol Sci Tech
Thomson and Mitra (2018), Science 3



Differential Mobility Analyzer

Concept and Advantages

= Filters particles of chosen electrical mobility (size)
= Measures the Size Distribution Function (SDF) 1008 St Sl
. . ] olydisperse
= Ideal for nanoparticles (routinely as small as 2 nm . l " | mobility Sample
but down to 0.65 nm with High-Resolution)

= No manipulation to the sample 'g—:;”m —
= Need controlled charging of particles and molecules velocity, ——»

‘L Monodisperse
l sample at mobility

To detector

Electrical mobility
7= % m?/Vs

de la Mora et al (2013), J. Aerosol Sci.



Artifacts due to finite time to dilute and transport

the sample to the DMA

Previous Study:

*Moving the radioactive bipolar ion .
: ‘ . | . =5
generation before the sampling probe | Qeample=3 lpm

*Using diffusion charger with

smaller volume
=
Sheath Flow

.......
e é

operating in closed loop balanced
Vacuum the sample inlet and outlet flows, Qoa.
Laminar premixed L and Maximize the instrument resolution
Ethylene/ air flame with C/O=0.69
[Stabilized by honeycomb]

— N |

Nitrogen Flow»

, ;

Carbone et al.(2016), Aerosol Sci Tech
Hoppel and Frick (1990), Aerosol Science Tech.



Previous Study:

Naturally charged by the flame

0.15 mm ~ 1800
108 ms
0.25 mm ~ 660

Collision charged via Krgs 1on seeding

0.08 mm ~ 6200
0.15 mm ~ 1800 108 ms
0.25 mm ~ 660

Current Study:

For both Naturally and Collision Charged

0.08 ~ 6200 99ms (A)
0.10 ~ 4300 I
49ms (B)
0.15 ~ 1800 37ms (A)
33ms (B)
0.25 ~ 660 28ms (B)



Experimental Method

Qsample=3 lpm For both Naturally and Collision
Configuration A Charged

2 Aerosol residence time

o Bypass Flow
- Qextra= 0 Ipm 99ms
—> Qextra= 5 Ipm

Qextra= 10 Ipm

— N
30 Ipm Nitrogen Flow
)

Excess Flow t=99ms
t=53ms

Vacuum t=37ms Vacuum
pump - pump 2 8 ms
Earaday Cup
Conﬁguration B T Qsample= 5 Ipm

Sample Dilution
Corespe) : Ratio (DR)

— N
30 lpm Nitrogen Flow Bypass Flow
Vv
Qextra= 0 Ipm ~ 1800
Qextra= 5 Ipm
Qextra= 10 Ipm
- t=49ms .
acuum acuum
pump ——t=33 ms pump =~ 6 2 O 0 7 7

t=28 ms



Naturally Charged - Effect of residence time

Configuration A with 100 um probe

Positive HAB=7.5mm  Negative A-99ms
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* Key message: Independent residence time achieved by 50% reduction of residence time For configuration A



Naturally Charged - Effect of residence time

Configuration B with 100 um probe

HAB=7.5mm pgitive B-49ms HAB=7.5mm ] B-49ms
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* Key message: Using bypass flow at the DMA inlet for configuration B results in residence time independency 9



Naturally Charged - Effect of residence time

Comparison at constant residence time of Configurations A and B with 100 um probe
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* Key message: Below 40ms of residence time the results are totally overlapped in both configurations 10



Naturally Charged - Effect off dilution ratio

Configuration B with shortest residence time of At =28 ms

Positive
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* Key message: SDF i1s independent of dilution ratio just up to 7.5mm 11



Configuration A and B with 100 pm probe

Positive
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Collision Charged - Effect of residence time
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* Key message: In the case of collision charge, the shape of the measured SDFs is virtually independent of
residence time when At 1s shorter than 40 ms
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Collision Charged - Effect of dilution ratio

Configuration B with shortest residence time At = 28 ms
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* Key message: SDF is approximately independent of dilution ratio for the case of minimum residence time 13



Conclusion

In this study, we :

* Obtained the size distribution of naturally and collision charged particles for sizes smaller than 2nm

* Controlled the transport and charging residence time (At) independent of all other parameters

*  Minimize the residence time to 28 ms

* Quenched the sample coagulation using residence time At below 40 ms

* Achieved dilution independent results for collision charged particles when the Dilution Ratio (DR) is
larger than 4300 (with 28ms residence time)

 Reached dilution independent results for naturally charged at HAB<7.5mm (particles smaller than

2.5nm) but not yet at HAB=10mm where the nanoparticles have larger number concentrations and sizes.
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