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 Scientific background- Fuel Reforming

 Experimental Setup

 Performance of ICE with Thermo-Chemical Recuperation

 Particle Emission

 Summary

Outline 



3

Source: U.S Energy Information Administration (April 2018)

Petroleum consumption for transportation
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92% of the transportation energy consumption is from crude oil
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Emissions Unit Euro 1 Euro 2 Euro 3 Euro 4 Euro 5a Euro 6b/c

NOx

mg/km

- - 500 250 180 80
HC+NOx 970 700 560 300 230 170

CO 2720 1000 640 500 500 500
PM 140 80 50 25 5.0 4.5
PN #/km - - - - - 6 ∙ 1011

Emissions Unit Euro 1 Euro 2 Euro 3 Euro 4 Euro 5a Euro 6b/c

THC

mg/km

- - 200 100 100 100
NOx - - 150 80 60 60

HC+NOx 970 500 - - - -
CO 2720 2200 2300 1000 1000 1000

PM - - - - 5.00 4.50

PN #/km - - - - - 6 ∙ 1011

Diesel Passenger Cars:

Gasoline Passenger Cars:

European emission legislation
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Coolant

Output

Exhaust

400 C < TExhaust < 900 C

Fuel energy distribution

About 1/3 of 

the energy 
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The goal
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On-board 
Fuel 

reforming

Emission 
mitigation

Crude oil 
dependency 

reduction

Efficiency 
improvement

Our goal

Waste heat recovery
Methanol - alternative 

(renewable) fuel

Hydrogen combustion
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Primary fuel selection
METHANOL

LIQUID METHANOL:

 Promising primary liquid fuel

 Low carbon-intensity

 Potentially renewable

 Can be produced from natural gas or 

coal

 Alternative for oil as a short term solution

 Can be produced from captured 
CO2 – PtX fuel (electrofuel)

 No significant infrastructure 
change needed

 Low reforming temperatures

GASEOUS REFORMING PRODUCTS:

 Hydrogen-rich gaseous fuel: 

(75%)H2+(25%)CO2

 Better fuel properties

 LHV increase

 Higher antiknock quality

 High laminar flame speed

 Wide flammability limits

 Zero-impact pollutant emissions

 No problems of onboard hydrogen 

storage
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1) MethanolSteam Reforming (MSR): 3 50kJ/mol

2)MethanolDecomposition (MD): 2 90 kJ/mol

3)EthanolDecomposition (ED): 50kJ/mol
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Thermo-Chemical 
Recuperation (TCR)

Primary alternative (renewable)  

and low-carbon intensity liquid fuel

Waste heat recovery process

 On-board hydrogen production

Ultra-low pollutant emissions

Methanol Steam Reforming (MSR)

CH3OH+H2O → 3H2+CO2         ΔH≈50 kJ/mol

High-Pressure Thermo-Chemical Recuperation

Poran, Thawko et al., Int. J Hydrogen Energy, 2018
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Single cylinder, spark ignition engine (Robin 

EY-20 based)

Bore x Stroke, mm 67x52

Displacement, cm3 183

Compression ratio 6.3

Power, kW @ speed, rpm 2.2 @ 3000

Fuel

supply

system

Gasoline Carburetor

Hydrogen-Rich 

Reformate

Direct

injection
Engine head with pressure transducer 
spark plug and injector

5 - In-cylinder pressure sensor

6 - Reformate direct injector

7 – Encoder

9 – Engine control system

24 – Reformer

33 – EEPS system

Experimental Setup
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Measured reformate composition

Methanol Steam Reforming (MSR)

CH3OH+H2O → 3H2+CO2         ΔH≈50 kJ/mol

Poran, Thawko, Eyal, Tartakovsky, Int. J Hydrogen Energy, 2018
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MSR

CH3OH+H2O → 3H2+CO2 

Total particle concentration comparison
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Particle size and number distribution- Effect of Fuel
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Particle size and mass distribution- Effect of Fuel

Based on Maricq’s et al. density distribution

𝑚𝑝 = 𝜌𝑒𝑓𝑓
4

3
𝜋(
𝐷𝑝

2
)3

𝜌𝑒𝑓𝑓 = 1.2378 ×
4

3
𝑒−0.0048𝐷𝑝

Maricq et al., Aerosol Science and Technology, 2006
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Singh et al., Fuel ,2016

Total particle concentration comparison

Previous studies showed significant PN reduction with hydrogen combustion
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High compression ratio ICE
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Single cylinder, Petter AD1 based

Bore x Stroke, mm 80x73

Displacement, cm3 367

Compression ratio 16

Power, kW @ speed, rpm 5.3 @ 3000

Fuel

injection

system

Diesel Direct

Hydrogen-Rich

Reformate

direct

port

Experimental setup

A comparison of direct and port reformate injection

Spark 

system

Port injector

Direct gas 

injector

Diesel 

injector

Pressure sensor

Encoder

Throttle
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Fuel injection strategy - Efficiency

 Wide open throttle in all cases

 13-19% improvement for MSR DI

 23-26% improvement for MSR PI

 PI limitations:

 Maximal power loss

 Low volumetric efficiency

 Abnormal combustion- backfire, pre-ignition
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High pressure hydrogen-rich reformate injection

 Underexpanded gaseous jet

 Possible mechanisms for particle formation
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Classification Nozzle pressure ratio (NPR)

Subsonic jet 1 < 𝑃0/𝑃∞ < 1.893

Moderately 

underexpanded jet 
2.08 < 𝑃0/𝑃∞ < 3.8

Highly underexpanded 

jet
3.84 < 𝑃0/𝑃∞

Crist S. et al., AIAA J., 1966 

Snedeker RS. et al., J. Fluid Mechanics, 1971

Underexpanded jet in gaseous fuel DI



22

 Jet-wall impingement

 Lubricant vapor entrainment towards the gaseous jet

 Hydrogen low quenching distance

Stoichiometric 
ratio

Kim et al. (2001)

Particle formation in DI-ICE fed by hydrogen-rich 

reformate- Possible mechanisms
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 DI-ICE with High-Pressure Thermo-Chemical Recuperation was developed enabling:

 Efficiency improvement (up to 39%)

 Gaseous pollutant emission reduction (up to 94%, 96% and 97% for NOx, CO and HC, respectively) 

 Direct injection of reformate leads to higher particle formation compared to gasoline 

 Future research will focus on identification of particle formation mechanism, and development of 

methods to mitigate particle emission

Summary
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