

HÔPITAL UNIVERSITAIRE DE BERNE





# Exposure to moderate air pollution and associations with lung function at school-age: a birth cohort study

Fabienne Decrue<sup>1</sup>, Jakob Usemann<sup>1</sup>, Insa Korten<sup>2</sup>, Elena Proietti<sup>1</sup>, Olga Gorlanova<sup>1</sup>, Danielle Vienneau<sup>3</sup>, Oliver Fuchs<sup>2</sup>, Philipp Latzin<sup>2</sup>, Martin Röösli<sup>3</sup> and Urs Frey<sup>1</sup> on behalf of the BILD study group

<sup>1</sup>University Children's Hospital Basel UKBB, University of Basel; <sup>2</sup>Pediatric Respiratory Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern; <sup>3</sup>Swiss Tropical and Public Health Institute Basel, University of Basel, all Switzerland.

### Background

 Adverse effects of higher air pollution levels before and after birth on subsequent lung function are often reported in the literature.



 We assessed whether low-to-moderate levels of air pollution during preschool-age impact on lung function at school-age.

### Methods

- In a prospective birth cohort study (Basel and Bern Infant Lung Development [BILD] cohort) of 304 healthy term-born infants, 232 (79%) completed lung function at follow-up at six years.
- Using spatial-temporal models, **levels of individual air pollution** (nitrogen dioxide [NO<sub>2</sub>] and ozone [O<sub>3</sub>], particulate matter with a diameter <10 µm [PM<sub>10</sub>]) were estimated for the **yearly time windows** pregnancy, first up to the sixth year of life, and birth until **follow-up at age six**.
- Time window means were compared to World Health Organization (WHO) guideline limits.
- Associations of exposure windows with spirometry (FEV<sub>1</sub>, FVC, FEV<sub>1</sub>/FVC) and body plethysmography (FRC<sub>pleth</sub>) indices were analyzed using regression models, adjusting for potential confounders.

**Figure 2** Effect of NO<sub>2</sub> ( $\mu$ g/m<sup>3</sup>) levels on FEV<sub>1</sub> (ml) at six years. The population was divided into quartiles by individual NO<sub>2</sub> levels (per quartile n=52). This resulted in low exposed (1<sup>st</sup> quartile), mid exposed (2<sup>nd</sup> and 3<sup>rd</sup> quartile) and highest exposed (4<sup>th</sup> quartile) subgroups. NO<sub>2</sub> ( $\mu$ g/m<sup>3</sup>) during different time windows (pregnancy, 1<sup>st</sup> year, 2<sup>nd</sup> year, 3<sup>rd</sup> year, 4<sup>th</sup> year, 5<sup>th</sup> year, 6<sup>th</sup> year) and

 For subgroup analysis, patients were categorized into quartiles based on individual pollution levels (four groups of 52 children each).



its effects on  $FEV_1$  (ml) at six years of age was calculated for 1<sup>st</sup> quartile, 2<sup>nd</sup> and 3<sup>rd</sup> quartile combined, and 4<sup>th</sup> quartile.

## Results

- Of the 232 children, 44 (19%) were exposed to ETS during the study period, 17 (7%) had asthma at six years, and 89 (38%) had atopic mothers.
- Mean NO<sub>2</sub> level from birth until follow-up was (11.8 μg/m<sup>3</sup>, range 4.9 to 35.9 μg/m<sup>3</sup>), which is almost 4-times lower than the WHO suggested limit of 40 μg/m<sup>3</sup> (Figure 1).
- In the whole population, increased air pollution levels from birth until follow-up were associated with reduced lung function at six years. In the subgroup analysis, the 52 children exposed to NO<sub>2</sub> levels from the highest quartile during pregnancy, the first and second year of life and from birth until follow-up, had a significant decrease in FEV<sub>1</sub> (Figure 2).
- Per interquartile range increase of NO<sub>2</sub>, FEV<sub>1</sub> decreased by (change in ml [95% confidence interval]) (-171 [-267 to -75]), (-155 [-258 to 53]) and (-136 [-221 to -51]), respectively (Figure 2).

**Figure 1** Temporal development of mean NO<sub>2</sub> ( $\mu$ g/m<sup>3</sup>) levels for each quartile. Temporal decrease over all investigated time windows (pregnancy, 1<sup>st</sup> year, 2<sup>nd</sup> year, 3<sup>rd</sup> year, 4<sup>th</sup> year, 5<sup>th</sup> year, 6<sup>th</sup> year). The population was divided into quartiles by individual NO<sub>2</sub> ( $\mu$ g/m<sup>3</sup>) levels; per quartile n=52.

# Funding

- Goldschmidt-Jacobson Foundation
- Swiss National Science Foundation
- Special Program Botnar Foundation

# Conclusion

- Our results suggest that exposure to higher NO<sub>2</sub> levels, which are still much lower than WHO guideline limits, especially during the sensitive period of early lung development, may be associated with reduced lung function at school-age.
- These findings support the concept of age and dosedependent pollution effects on lung function in healthy school-aged children and underline the importance of further pollution reduction measures.