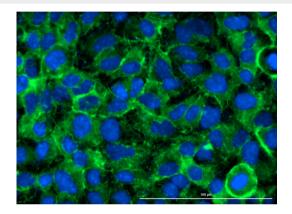
HelmholtzZentrum münchen

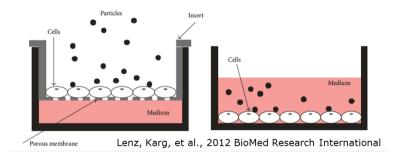
German Research Center for Environmental Health

A Step towards Standardisation of Air-Liquid Interface Exposures using a Model Diesel Aerosol

<u>Christoph Bisig</u>, Erwin Karg, Sebastiano Di Bucchianico, Nadine Gawlitta, Stefanie Bauer, Jürgen Orasche, Elias J. Zimmermann, Anja Huber, Stephanie Binder, Sebastian Öder, Ralf Zimmermann.

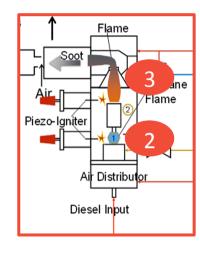
Zürich, ETH Combustion Generated Nanoparticles




Questions? christoph.bisig@helmholtz-muenchen.de

Motivation

- Air pollution → cardiovascular and respiratory diseases
- In vitro toxicological studies with ambient particles are needed
- Air-liquid interface vs submerged exposures
- Reference Aerosol needed for aerosol toxicology community (comparability)
- Are long-term Exposures possible?
- ➤ Aim: To investigate the in vitro effects of model particles and develop an optimized exposure protocol for the cell exposure system.



Methods – Exposure setup

Source

- dieselCAST
 - Benchtop device [1]
 - Two flames
 - Propane flame to heat up diesel [2]
 - Diffusion flame diesel [3]
 - 50-60 μL/min fuel [4]
- Dilution
 - Porous Tube Diluter [5]
 - Ejector Diluter [6]
 - Uses purified compressed air

Methods – Exposure setup

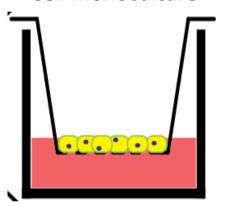
Source

dieselCAST flame soot generator:

- 2 x 6h

Ambient filtered air:

2 x 18h

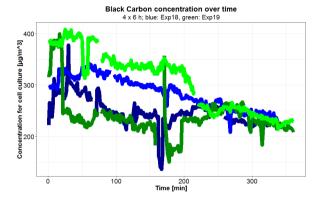

Exposure System

Vitrocell™ aerosol exposure station

- Flow 50 mL/min
- Humidity 85%
- Particle deposition through diffusion

Cell monoculture

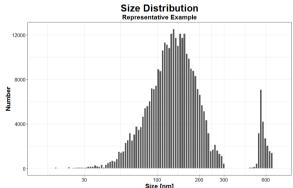
A549 monoculture:


- 48h Exposure
- **Endpoints:**
- Cell viability
- Gene expression
- Genotoxicity

Results – Aerosol characterisation

§ Aethalometer: Black Carbon mass; Light absorption on Filter through deposited particles

Particle mass (Aethalometer§, online Black Carbon)


→ 270 μ g/m³ (avg over 6h, n = 4)

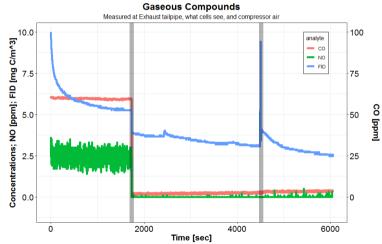
& SMPS: Scanning Mobility Particle Sizer; Size distribution through sequential analysis of selective narrow particle sizes (coupled to CPC\$)

⁵ **CPC**: Condensation Particle Counter; Particle growth through condensation to optical detectable sizes

Size Distribution (SMPS[&], online)

→ **Bimodal** distribution with peaks at **140 nm** and 550 nm

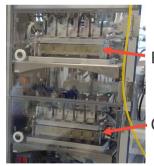
Particle number (CPC\$, online)


 \rightarrow 3*10⁴/cm³ Particles (avg over 6h, n = 4)

Results – Aerosol characterisation

- Gaseous compounds (FTIR§ and FID\$, online)
 - Analysis is ongoing
- Chemical characterisation (offline)
 - OC/EC Analyser
 - Particles are EC-rich
 - GC-MS[&]
 - Quantification of some PAHs, alkanes, and more
 - Analysis ongoing
 - GCxGC-MS
 - Non-targeted approach
 - What other SVOCs are there?
 - Analysis ongoing

Tailpipe Diluted (cells) Dilution Air

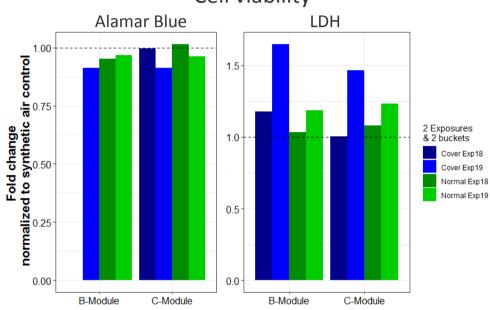

 $[\]S$ FTIR: Fourier-transform InfraRed spectroscopy; absorption spectroscopy of hot-filtered aerosol

^{\$} FID: Flame Ionization Detector; Ion detection by combustion of organic carbon in a hydrogen flame ("as propane")

 $^{^{\&}amp;}$ GC-MS: Gas chromatography—mass spectrometry; Schnelle-Kreis et~al., Anal Bioanal Chem (2011)

Results – Cell viability

- Microscopy
 - Visual inspection of cells
- Alamar Blue Assay
 - Cell metabolism
- LDH Assay (Lactate Dehydrogenase)
 - Membrane disruption
- **➢** Good cell viability
- > Similar cell viability in different settings



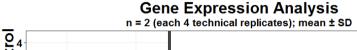
B-Module

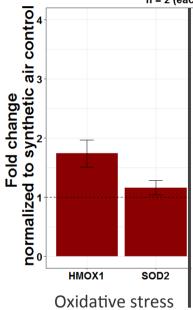
C-Module

Cell viability

Dose: 270 $\mu g/m^3$ Black Carbon and $3\!*\!10^4/cm^3$ Particles

Controls: i) Incubator control w/ HEPES, w/o CO2; ii) Incubator control w/ CO2


iii) Positive controls: T-X (LDH), TNFa and HQ (qPCR), $\rm H_2O_2$ (Comet)

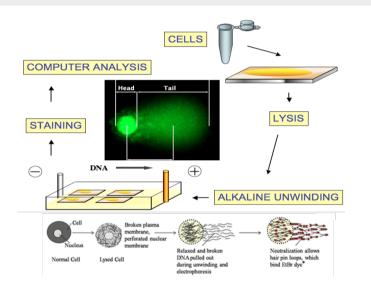

HelmholtzZentrum münchen
German Research Center for Environmental Health

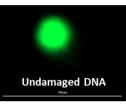
Results – Gene expression

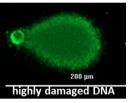
- Gene expression analysis
- Oxidative stress
 - HMOX1 (or HO-1) and SOD2 are first responders to stress
- Inflammation
 - Three cytokines
 - Interleukin 1 beta is upregulated
- Cytochrome P450 (CYP1A1)
 - Induced by PAHs
- > Cells respond to the prolonged exposure

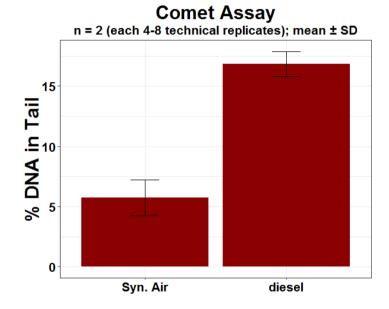
Dose: 270 μg/m³ Black Carbon and 3*10⁴/cm³ Particles

Controls: i) Incubator control w/ HEPES, w/o CO2; ii) Incubator control w/ CO2


iii) Positive controls: T-X (LDH), TNFa and HQ (qPCR), $\rm H_2O_2$ (Comet)


HelmholtzZentrum münchen German Research Center for Environmental Health





Results – Genotoxicity

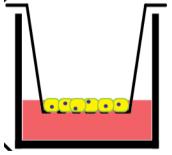
- Genotoxicity in A549 cells using Comet Assay
- > dieselCAST induces high genotoxicity in A549 cells

 $\textbf{Dose:}\ 270\ \mu\text{g/m}^3\ \text{Black Carbon and}\ 3*10^4\text{/cm}^3\ \text{Particles}$

Controls: i) Incubator control w/ HEPES, w/o CO2; ii) Incubator control w/ CO2

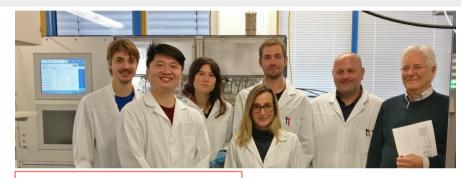
iii) Positive controls: T-X (LDH), TNFa and HQ (qPCR), H₂O₂ (Comet)

HelmholtzZentrum münchen
German Research Center for Environmental Health



Summary

- dieselCAST
 - Model diesel Aerosol
 - 2 x 6h exposure (over night filtered ambient lab-air)
- Cell Exposure system
 - 48h total runtime possible
 - Different settings tested in 2 repetitions (modules, buckets)
- A549 monoculture
 - At Air-Liquid Interface
 - Cells in monolayer



Conclusion/ Outlook

- Stable aerosol over 4 days (6h/day)
- No cytotoxicity/ good cell viability
- Increase in oxidative stress, (pro-)inflammation, and xenobiotic metabolism
- Genotoxicity
- More testing needed if dieselCAST suitable as reference aerosol
- Aerosol Characterisation
 - Offline measurement of SVOCs
 - Online gaseous characterisation
- Repetition of these experiments (for statistical analysis)

Thank you for your attention

Involved people at CMA (alphabetically)

- Anja Huber
- Christoph Bisig, Dr.
- Elias J. Zimmermann
- Erwin Karg, Dr.
- Jürgen Orasche, Dr.
- Gert Jakobi, Dr.
- Nadine Gawlitta
- Ralf Zimmermann, Prof.
- Sebastian Öder, Dr.
- Sebastiano di Bucchianico, Dr.
- Stefanie Bauer, Dr.
- Stephanie Binder

A special thanks to:

The Hong Kong Polytechnic University

- Jin Ling (aka Nathanael)
- He Tangtian (aka TT)

Questions?

HelmholtzZentrum münchen German Research Center for Environmental Health

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES