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INTRODUCTION

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental
pollutants generated primarily during the incomplete combustion of organic
materials. Their chemical and physical characteristics strongly influence their
fate, transport in the environment and the way they interact with biological
systems.

As today, there is no accurate predictive model for the formation and growth of
PAHs. The aim of this study is to identify reaction pathways for the formation of
PAHs using a unique computational tool based on stochastic discrete modeling,
that describes the chemical pathways as function of reactive sites rather than
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aromatic compounds in flame using the Stochastic Nanoparticle Simulator
(SNapS2) [Wang et. al., in preparation]. Given a set of chemical reactions and
environmental conditions, SNapS2 simulates the trajectories of sequential /
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can give general insights into the growth process. The Snaps2 code is
employed to compute the evolution of PAHs along the streamlines identified by
the CFD simulations.
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Fig. 5: Examples of molecular structures formed along streamline (i) at different times

Fig. 1.  Examples of
trajectories identified by the
SNapS2 code depicting the
molecular growth of various
PAHSs, including oxy-PAHSs.

Figure 5 shows examples of molecular structures formed along oxidizer-side
streamline (i) at different times. At early stage, a significant number of oxygenated
species are formed, with the presence of some furan-type structure. Later, the

f’ Oxygen atoms are in red amount of oxygenated species decreases, and eventually hydrocarbons are
hydrogen atoms in white mainly formed via HACA mechanism [Frenklach et. al., PCI, 2005].
and carbon atoms in gray.
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IMPACT & CONCLUSIONS

This work highlights the formation of oxy-PAHs in a counterflow flame of pure
hydrocarbons, emphasizing the need for a new chemistry of oxidation of PAHs
that is currently not included in kinetic mechanisms. Further work will focus on
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Experimental data:

Flame-sampling molecular-boeam mass spectrometry (VUV-MBMS) and
aerosol mass spectrometry (VUV-AMS) [Johansson et al., PCI, 2017].
System:

Atmospheric-pressure ethylene/oxygen/argon counterflow diffusion flame. The
fuel side is composed of 0.23 sim C,H, and 1.10 slm Ar; the oxidizer side
supplied a mixture of 0.25 sIm O, and 1.20 sIm Ar.

reaction mechanisms for the interactions of PAHs and oxygen, especially furan-
type compounds. The need for a predictive model that can reproduce the
distribution and characteristics of compounds of incomplete combustion is of
great importance. Indeed, oxygenated compounds can have detrimental effects
on human health, air quality and climate. Indeed, furans are toxic and pose a
serious threat to human health. Being able to predict their formation is therefore
of great importance.
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