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1. Introduction 4. Model Validation
« Black Carbon (BC) Particle Number (PN) emissions from the transport sector influences Internal Combustion Engine & Inverted Burner
health and climate, yet it's impact remain highly uncertain. 10 1 107 1
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« Aims & Objectives: ¢ Inverted Burner (R = 0.870, NMB = -10.6%) w Inverted Burner (R2 = 0.738, NMB = 15.5%)
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1. Develop a new model to estimate BC PN emissions from mass using the theory of 10125 e 02 10127 e 02
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fractal aggregates. Measured N - Denuded Concentration [m™] Measured N - Denuded Concentration [m™]

2. Validate the new model using BC measurements from three different emission sources

3. Perform an uncertainty and sensitivity analysis to understand the accuracy and | | | |
uncertainty bounds of the outputs of the newly developed model. « For two different sets of k, and D, values, the difference in the FA model outputs (estimated N)

Is within £ 20% of the measured N. Hence, constant values of k, = 0.998 and D, = 1.069 can be
used when specific k, and D, data for a given operating condition is not available.

Aircraft Gas Turbine Engines at Ground and Cruise Conditions
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For aircraft emissions, we assume k, =1& D, = EDfm [Recall: n,, = ka(j—m)wa or ny,, = (j—m)Dfm]
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Nomenclature & 10 - 7 1°°
m Mass of one BC aggregates Npp Number of primary particles in an aggregate . 0 0.4
dm Aggregate Mobility Diameter dpp Primary Particle Diameter y ” - L )\
Qo BC Material density k, & D, Scaling prefactor & projected area exponent ' * SAMPLE III.2 (R? = 0.985, NMB = 41.5%) ' 0.3
Dim Aggregate mass-mobility exponent | ktgm & Drgy TEM prefactor-exponent coefficient pairs il P | |WEETORr20% o o W,
GMD  Geometric Mean Diameter n(dy,) No. of aggregates for a given mobility diameter range 1= 1013 1014 10'° 106 10114014 1015 02
GSD Geometric Standard Deviation M& N Total mass and number of BC aggregates Measured EIl_ kg '] Measured EI_ kg ']
: d dm~\D
* In a free molecular regime, n,, = ka(d_;r;)zm or n,, = (d—;r;) fm 2],
o where constant values of k, = 0.998 and D, = 1.069 can be used for aggregates formed of « For ground validation (Flg 38.), a systematic overestimation of Eln IS observed at higher thrust
polydisperse primary particles, irrespective of the state of sintering [3]. settings (data points with lower Kn) as BC aggregates are formed in the continuum regime.
« Total mass of aggregates for a given Particle Size Distribution (PSD):
d 5. Uncertainty & Sensitivity Analysis
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\ / * Due to the non-linearity of the FA model, the uncertainty of the estimated N or El_ IS
T , In . asymmetrically distributed (-37%, +55%) at 1.960 (Fig. 4a).
m = 00 (E) dp, n(dm) = N X p(dy) R
I / iy « Sensitivity analysis (Fig. 4b) identified that the uncertainties in GSD contribute to the largest
0 [ sop. [, o sensitivity in the FA model output, followed by inputs of M, Dy, and GMD.
M = J m(d)n(d,,) dind,, » M = Nkapo(g)(kTEM) « [ dy’ p(dy) dlindy,
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A prioritisation can be recommended for future research to measure these critical parameters
more accurately to reduce the uncertainty bounds of the FA model outputs.
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Resolve the remaining integral (¢ moment of a log-normal distribution) & rearrange for N:
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« BC aggregate morphology and PSD, such as the GMD, GSD and Dy, are dependent on S o GG o437
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* The new Fractal Aggregates (FA) model relates BC mass, number and PSD in one equation. E E;’z D, N 0.1099
150 ¢ o
S BC o, [l  0.0380
3. Data & Methodology 100} =
kKrey/M  0.0114
 The FA Model is validated with data from (i) An internal combustion engine |5, (i) An inverted 50| k] 0.0110
burner 6], and (iii) Two aircraft gas turbine engines at ground and cruise conditions 0
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« An uncertainty analysis for the FA model is performed using the Monte Carlo 1000-member Model Outputs - Estimated EI _[kg™] ~ x10 Sensitivity Index - Total-effect indices (S_)

ensembles, while a global sensitivity analysis is accomplished using the Sobol’ Method

Summary & Future Work

* A new methodology to relate BC Particle Number and Mass emissions is developed based on » Future Work: Application of FA Model to estimate BC EI_ for Aviation Emissions
the theory of fractal aggregates, and validated with three different BC emission sources.
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» Large uncertainties remain; GMD, GSD, M & Dy, inputs are identified as important parameters. Dataset Ambient Atmospheric Conditions _—— P J
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