Design of a Novel Gasoline Particulate Filter Aging Method

Stefan Sterlepper, Johannes Claßen, Prof. Dr. Stefan Pischinger: Institute for Combustion Engines VKA, **RWTH Aachen University**

Jim Cox, Dr. Michael Görgen, Helmut Lehn, Dr. Johannes Scharf: FEV Europe GmbH 22nd ETH Conference on Combustion Generated Nanoparticles, Zurich, June 19th - 21st, 2018

loads

	Vehicle	Engine + modified oil control rings	Engine + fuel doping	Burner + fuel doping	Burner + oil injection
Likelihood to find this ash in vehicles	CC	0		To be investigated	To be investigated
Acceleration potential / oil volume flow variability		G	æ	G	Ͼ
Ash formation adjustability				-	6
Reproducibility of subsequent agings		0	0	0	To be proven
				Chosen approaches	

The burner test bench with dedicated oil injection uniquely allows to influence the ash formation

RNTH

Institute for Combustion

Burner with fuel doping and oil injection investigated for GPF aging

A oil feed design, which is independent from the fuel and (primary) air feed, enables flexible control of the ash content in the exhaust gas

definit System

choice

System

Oil-air-feed screwed through burner wall into combustion chamber

Secondary air control and different nozzle designs enable adjustment of the oil spray pattern

dp_{ash(300)} m_{ash} GPF backpressures ults new vs. ash-loaded Fuel doping 12.2 g ~22.4 mbar 60 Oil injection 9.2 g 4.2 - 9.0 mbar S Vehicle reference ¹⁾ 12.9 g ~ 6.5 mbar bar 50 loading dp_{ash(300)} 40 Comparison of 2 agings: Ð exhaust mass flow * 3 30 & final ash load \approx const. Sh 20 ckp \rightarrow wall ash thickness \checkmark J 10 <u>ס</u> Ω Exhaust mass flow

The oil-injection-GPF does not show the (unrealistic) thick white ash layer known from fuel doping for rapid ash loading

Fuel doping

Institute for Combustion Engines RWTH Aachen University Forckenbeckstraße 4 52074 Aachen

Contact:

Stefan Sterlepper Sterlepper_s@vka.rwth-aachen.de

FEV Europe GmbH Neuenhofstraße 181 52078 Aachen www.fev.com

1) Vehicle reference and SEM pictures by Corning. The authors thank Corning for the valuable contribution.

www.vka.rwth-aachen.de