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… uncertainties in net climate
forcing from black-carbon-rich

sources are substantial, 
largely due to lack of knowledge

about cloud interactions with
both black carbon and co-

emitted organic carbon.

Kanji, Z. A., et al. (2017). "Overview of Ice Nucleating Particles." 
Meteorological Monographs 58(0): 1.1-1.33.

,,Bond et al. (2013)
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Method: Ice nucleation measurements
The Horizontal Ice Nucleation Chamber (HINC)[1,2]

A Continuous Flow Diffusion Chamber (CFDC)

Active Fraction = 𝑵𝑵(𝑰𝑰𝑰𝑰𝑰𝑰)
𝑵𝑵(𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨)

[1] Lacher, L., et al. (2017). "The Horizontal Ice Nucleation Chamber (HINC): INP measurements at conditions relevant for mixed-phase clouds at the High Altitude Research 
Station Jungfraujoch." Atmospheric Chemistry and Physics 17(24): 15199-15224.
[2] Mahrt, F., et al. (2018). "Ice nucleation abilities of soot particles determined with the Horizontal Ice Nucleation Chamber." Atmos. Chem. Phys. Discuss. 2018: 1-41. 3



Materials and methods
Soot samples and experimental set up
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Commercial and industrial carbon blacks

miniCAST/propane flame soot  miniCAST soot with different 
organic matter content were 
used as surrogates for soot 
emitted from jet engines.[1]

 Fullerene soots (FS) have 
previously been attributed to 
Diesel engines.[2]

 FW200 is an industrial carbon 
used as surrogate of 
atmospherically aged soot.

 Lamp Blacks are frequently 
used in pigment applications 
and have been investigated for 
ice nucleation.[3]

[1] Bescond, A., et al. (2014). "Automated Determination of Aggregate Primary Particle Size Distribution by TEM Image Analysis: Application to Soot." Aerosol Science and Technology 48(8): 831-841.
[2] Muller, J. O., et al. (2005). "Morphology-controlled reactivity of carbonaceous materials towards oxidation." Catalysis Today 102: 259-265.
[3] DeMott, P. J., et al. (1999). "Ice formation by black carbon particles." Geophysical Research Letters 26(16): 2429-2432.



Results: Ice nucleation of size selected soot particles
Onset conditions for 1% of the particles to activate into ice crystals and/or cloud droplets

[1] Koop, T., et al. (2000). "Water activity as the determinant for homogeneous ice nucleation in aqueous solutions." Nature 406(6796): 611-614.
[2] Friedman, B., et al. (2011). "Ice nucleation and droplet formation by bare and coated soot particles." Journal of Geophysical Research-Atmospheres 116.
[3] Welti, A., et al. (2009). "Influence of particle size on the ice nucleating ability of mineral dusts." Atmospheric Chemistry and Physics 9(18): 6705-6715.

 100 nm soot particles  do not 
heterogeneously nucleate 
ice.

 Dependence on 
homogeneous nucleation 
temperature (HNT = 235 K) [2]

suggest involvement of liquid 
water[3]. 

Water saturation

Koop et al. (2000)[1]
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Cirrus regime (T < 235 K)



Results: Ice nucleation of dm = 400 nm soot particles
Cirrus temperature regime[1]

[1] Mahrt, F., et al. (2018). "Ice nucleation abilities of soot particles determined with the Horizontal Ice Nucleation Chamber." Atmos. Chem. Phys. Discuss. 2018: 1-41.
[2] Koop, T., et al. (2000). "Water activity as the determinant for homogeneous ice nucleation in aqueous solutions." Nature 406(6796): 611-614.

Koop et al. (2000)[2]
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AF curves

What particle 
characteristics can 

explain difference in 
ice nucleation ability?



Ice nucleation mechanism
Can soot nucleate ice via Pore Condensation and Freezing (PCF)[1]?

RHw < 100%

[1] Marcolli, C. (2014). "Deposition nucleation viewed as homogeneous or immersion freezing in pores and cavities." Atmos. Chem. Phys. 14(4): 2071-2104.
[2] Koop, T., et al. (2000). "Water activity as the determinant for homogeneous ice nucleation in aqueous solutions." Nature 406(6796): 611-614.

PCF mechanism :
 Water uptake at RHw < 100%

 Inverse Kelvin effect
 Pore water freezes

Figure: R. O. David

Steep activation curve of FW200 
suggests homogeneous freezing type 

mechanism.

𝑝𝑝𝑙𝑙𝑙𝑙 = 𝑝𝑝𝑙𝑙 � 𝑒𝑒𝑒𝑒𝑒𝑒
−4𝛾𝛾𝑣𝑣𝑙𝑙
𝐷𝐷𝑝𝑝
𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑅𝑅𝑅𝑅

𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈 𝐊𝐊𝐊𝐊𝐊𝐊𝐊𝐊𝐊𝐊𝐊𝐊 𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞:

𝑫𝑫𝒑𝒑: Pore diameter
𝜽𝜽: Contact angle
𝑻𝑻: Temperature
𝑝𝑝𝑙𝑙𝑙𝑙: water vapor pressure - concave surface
𝑝𝑝𝑙𝑙: water vapor pressure - flat surface
𝛾𝛾: surface tension of water
𝑣𝑣𝑙𝑙: molar volume of water
𝑅𝑅: dry gas constant

Koop et al. (2000)[2]



Porous and fractal structure of soot particles
What can TEM evaluation tell us about particle morphology?
Overall aggregate structure & primary particle size

[1] David et al. (in prep.), "Is Deposition Ice Nucleation Real? The Role of Pore Condensation and Freezing on Atmospheric Ice Nucleation" 

8Data: E. Barthazy Meier 

 Pores formed in between sintered 
primary particles.

 TEM evaluation reveals mesopores
with diameters between 2 – 8 nm.

 Soot with smaller primary particles 
are more likely to nucleate ice via PCF 
due to the higher propensity of pores.

 Macroscopic ice only grows out of 
pores if they are closely spaced[1].



Results: Ice nucleation of dm = 400 nm soot particles
Cirrus temperature regime

Question:
 Pure availability of porous 

structures seems to be 
insufficient.

 What are we missing?
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𝑫𝑫𝒑𝒑: Pore diameter
𝜽𝜽: Contact angle
𝑻𝑻: Temperature

𝑝𝑝𝑙𝑙𝑙𝑙 = 𝑝𝑝𝑙𝑙 � 𝑒𝑒𝑒𝑒𝑒𝑒
−4𝛾𝛾𝑣𝑣𝑙𝑙
𝐷𝐷𝑝𝑝
𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑅𝑅𝑅𝑅

𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈 𝐊𝐊𝐊𝐊𝐊𝐊𝐊𝐊𝐊𝐊𝐊𝐊 𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞:



Results: Wettability of soot particles
Water Adsorption Isotherms
Gravimetric technique: Dynamic Vapor Sorption (DVS) 

 More ice active soot shows 
enhanced water adsorption

 Strong water uptake at high RHw
indicates presence of mesopores 
on FW200, needed for PCF

 Strong water uptake indicative of 
low soot-water contact angle

 DVS results support a PCF ice 
nucleation mechanism

[1] Ferry, D., et al. (2002). "Water adsorption and dynamics on kerosene soot under atmospheric conditions." Journal of Geophysical Research-Atmospheres 107(D23)
[2] Thommes, M., et al. (2015). "Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)." Pure and Applied Chemistry 87(9-10): 1051-1069.
[3] David, R. O., et al. (in prep.). "The Role of Contact Angle and Pore Width on Pore Condensation and Freezing."

hydrophilic

hydrophobic

Data: P. Grönquist 

Initial water
adsorption via 

oxygen-containing
polar surface groups.

Secondary adsorbtion through initial 
adsorbed water molecules followed by the

appearance of water clusters [1] and capillary
condensation [2]. 



Pore filling conditions
Can PCF estimates explain results?
Example: FW200 particles dm = 400 nm

 Soot-water contact angles reported in 
literature range from 60 to 80°[1,2].

 Ice formation of FW200 falls within
expected range, using pore sizes (from
TEM and DVS) and contact angles (from
literature).

 Nevertheless, better experimental 
determination of both contact angles
and pore sizes needed.

T = -55 °C

[1] Persiantseva, N. M., et al. (2004). "Wetting and hydration of insoluble soot particles in the upper troposphere." Journal of Environmental Monitoring 6(12): 939-945.
[2] Wei, Y., et al. (2017). "The Wetting Behavior of Fresh and Aged Soot Studied through Contact Angle Measurements." Atmospheric and Climate Sciences Vol.07No.01: 12. 11



Summary and Conclusions
Contact: fabian.mahrt@env.ethz.ch

(1) Soot particles can contribute to ice formation below 
homogeneous freezing of solution droplets only for dm > 100 nm.
 Larger soot particles mainly sourced from biomass burning and wildfires[1]

 Soot particles from aviation emissions generally found to be < 100 nm[2,3]

(2) Distinct dependence on HNT suggests involvement of liquid water 
in ice nucleation process on soot particles.
 Ice formation in cirrus regime and absence for MPC temperatures 
 Best described by a PCF mechanism[4,5]

(3) Soot particle properties determine freezing ability by PCF.
 Cavities/pores are available, but their size and propensity is important
 Wettability/Soot-water contact angle as driving factor to inhibit and/or trigger ice 

formation. 

[1] Chakrabarty, R. K., et al. (2014). "Soot superaggregates from flaming wildfires and their direct radiative forcing." Scientific Reports 4: 5508.
[2] Moore, R. H., et al. (2017). "Biofuel blending reduces particle emissions from aircraft engines at cruise conditions." Nature 543(7645): 411-+.
[3] Yu, Z. H., et al. (2017). "Evaluation of PM emissions from two in-service gas turbine general aviation aircraft engines." Atmospheric Environment 160: 9-18.
[4] Higuchi, K. and N. Fukuta (1966). "Ice in capillaries of solid particles and its effect on their nucleating ability." Journal of the Atmospheric Sciences 23(2): 187-&.
[5] Marcolli, C. (2014). "Deposition nucleation viewed as homogeneous or immersion freezing in pores and cavities." Atmos. Chem. Phys. 14(4): 2071-2104.

100 nm

RHw < 100%
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