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Motivation and background

S00t: carbonaceous particles Dimethyl Ether

resulting from Incomplete DME ) All)
combustion of hydrocarbon ( ) «w W
fuels. Advantages

*High oxygen content & the
absence of C—C bonds: smokeless
combustion, low formation and high
oxidation rates of particulates.

“* High cetane number

“* Low boiling point

Secondary Sulfate
and Nitrate

Organic Carbon
Compounds

Elemental Carbon Core

» Incomplete Combustion: Efficiency Disadvantages
» Deposition : Burner Lifetime / Performance < Low energy density

» Health: Carcinogenic and Mutagenic . i - -
: _ ) : “ High requirements on sealing
>CI|rr!at_e. (_3Ioba| Warming & Regional materials
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Sooting tendency

Quantitative sooting metrics were pronounced to evaluate sooting
tendency among a wide range of hydrocarbon fuels, e.g., TSI, YSI.
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Fig. 3. Relationship between TSI and MW/SP ratio for pro-

i ) Fig. 6. Two sets of literature TSIs [9,27] plotted versus the
totype JP-900 fuel mixtures.

measured YSIs. For clarity, error bars are shown for only
[1] Yang Y, Boehman AL, Santoro RJ. Combust Flame one data point in each set; they represent the 3% total un-

2007;149:191-205. certainty in YSI. the 15% precision of TSI-Hunt, and the
[2] McEnally CS, Pfefferle LD. Combust Flame 2007;148:210-22. 7% precision of TSI-Olson.
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Experimental setup

Light scattering technique + Counterflow diffusion flames
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Schematics of experimental apparatus: Light scattering setup (a), and atmospheric
counterflow burner (b)
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Numerical Simulation

Flame temperatures and species concentrations of
experimental flames were computed using Chemkin Pro. A
soot model iIs not included in the simulation due to the
negligible impact of soot on flame temperature at the sooting
limit.

* Module: Opposed-flow Flame package

« Reaction kinetic model: KAUST-Aramco PAH Mech 1

(KAMZ1)
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[1] Park, Sungwoo, et al. "Compositional effects on PAH and soot formation in counterflow diffusion flames of gasoline
surrogate fuels."” Combustion and Flame 178 (2017): 46-60.



8 Clean Combustion Research Center, King Abdullah University of Science & Technology (KAUST)

CONTENT

® |ntroduction
= Methodology
m Results and Discussion

® Conclusions




9 Clean Combustion Research Center, King Abdullah University of Science & Technology (KAUST)

The sooting limit map defined as the critical oxygen mole fraction

(X,) related to the fuel mole fraction (X) at soot inception point is
detailed discussed in [1,2].

.6
= |P=1atm
4 - ) <
Notation NG
24
B: DME mixing ratio é
-
p= [C,H 0]+[C,H,] =
(b]
G _J E
o)) 0 ,

21 24 27 30
Distance from fuel nozzle [mm]

[1] Y. Wang, S.H. Chung. Combust. Flame 161.5 (2014): 1224-1234.
[2] P.H. Joo, Y. Wang, A. Raj, S.H. Chung, Proc. Combust. Inst. 34 (2013) 1803-1809.
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Repeatability
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[1] Y. Wang, S.H. Chung. Combust. Flame 161.5 (2014): 1224-1234.
[2] P.H. Joo, Y. Wang, A. Raj, S.H. Chung, Proc. Combust. Inst. 34 (2013) 1803-1809.
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1. Sooting Limit Map
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2. Highest sooting tendency
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3. Dilution effect
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5. Kinetic analysis
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Conclusions

e The sooting limits (X; and X,) are significantly sensitive to pressure, and the sooting
tendency increases at higher pressure. The range of B in increasing soot propensity
with DME addition expands with pressure, thus the effort to reduce soot by doping DME
may not be effective at high pressures.

e When the fuel (or carbon flow) is diluted, the dependence of dilution on sooting
tendencies increases. That is, as X; decreases, the increase of X, . with respect to DME
mixing ratio becomes more sensitive, meaning that the effect of DME addition on sooting
tendency increases as the fuel is diluted.

e The behaviors of the DME effect on sooting limits in SF flame and SFO flame are
slightly different. Sooting tendency is more sensitive in SFO flames than in SF flames
due to the thermal effect.

e Kinetical analysis indicate that soot formation with DME addition is dominantly
determined by the synergistic chemical effect, which is likely realized by the pathway
of DME—CH4(H)—C,H,(C,H;&C;H;)—CH,—soot.
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