21th ETH Conference on Combustion Generated Nanoparticles, Zurich, June 18-21, 2018

Particle number emissions from technological lubricants used in the manufacturing of the

TECHNICAL UNIVERSITY OF LIBEREC Faculty of Mechanical Engineering

automotive exhaust system

Martin Pechout^{1,2}, Petr Franc¹ and Michal Vojtisek-Lom^{1,3} 1 Department of Vehicles and Engines, Faculty of Mechanical Engineering, Technical University of Liberec, Studentská 2, 461 17 Liberec, Czech

Republi

2 Department of Vehicles and Ground Transport, Technical Faculty, Czech University of Life Sciences, Kamýcká 129, 160 00 Praha 6, Czech Republic 3 Center for Sustainable Mobility, Faculty of Mechanical Engineering, Czech Technical University in Prague, Prilepska 1920, 252 63 Roztoky, Czech

Background

9E+15

8E+15

7E+15

6E+15

5E+15

4F+15

3E+15

2E+15

Total particle production [#]

• NM3

EEPS

• Current engine technologies allow for significant reduction of PN production.

• Other sources of traffic related PN sources (i.e. brake and tire wear) and "off-cycle" emissions are becoming significant

 Industrial lubricants are used during production process (e. g. bending) of exhaust gas components.

. These lubricants are usually not removed from the exhaust, are exposed to high exhaust gas temperatures and are undergoing thermal processes (thermal decomposition, combustion).

• Additional pollutants and specific odour are undesirably generated during first tens kilometers of operation of each such new car.

Overall test particles production

Engine only production (5 test runs)

Faculty of Mecha Engineering

Goals: • To characterize "excess" particle emissions originating from exhaust system technological lubricants

- To determine relationship between mass of lubricant used and emissions
- To explore changes in particle size distribution and share of particulates not
- detected by the PMP procedure

Results and Discussion

• Production of PN is increased about nearly two orders of magnitude higher when burn-off procedure is performed compared to engine out emissions only

· One pass of the procedure was enough to remove nearly all the deposited lubricants

• Lubrication burned particles are not generated before 130 km/h suggesting particles originating from lubricant are emitted predominantly during highway operation, possibly during rural and least probably during city operation

• Size distribution peak is shifted from approx. 50 nm at load corresponding to 130 km/h to about 10 nm when load increased

• 1 g of lubricant corresponds to the net production of approximately 0,3 - 1.1015 non-volatile particles (lower values for higher lubricant amounts), which corresponds to 500-2000 times the 6 x 10¹¹ particles per km Euro 5b-6 PN emission limit

· Whole exhaust contains tens of grams of lubricants in total so overall burn-off PN emissions are expected to correspond to (up to) several tens thousand kilometers of vehicle operation

Experimental

• The experiments were conducted on a state of art production three cylinder direct injection spark ignition gasoline engine mounted on a powertrain dynamometer

· Operation consisted from steady-state operating points with three minutes duration with rising load and exhaust gas temperatures: idle, steady-state operation at 50, 90 and 130 km/h at rpm and torgue corresponding to actual road conditions, and 130 km/h with increased load (uphill section of a motorway)

• Multiple sets of middle part exhaust tubes were prepared, each with controlled amount of lubricants applied during manufacture

• The lubricant amount was ranging 1 - 17 g where about 10 g is technological optimum for the bending process

• Exhaust gas flow has been determined using build in MAF sensor data obtained through OBD interface

• Particle emissions were measured by Testo NanoMet3 (PN according to the PMP procedure), TSI EEPS 3090 (size distribution of all particles including volatiles, 5-560 nm), gaseous pollitants by a portable miniPEMS (NDIR for CO, CO2. HC: chemical cell for NO_u and O₂)</sub>

• Net contribution of the lubricant to PN emissions (relative to operation with "degreened" exhaust) has been and evaluated as a function of the lubricant used

100 1000 Equivalent mobility diameter [nm]