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The Smoluchowski equation is a population balance equation, describing temporal A set of extra equations to the conventional S.E. accounts for poly-disperse particles entering to the
evolution of particulates’ concentrations, applicable to the study of particulate dynamics physical system of particle-surface. These particles enter to the system to either deposit on to a free
and morphology such as formation of particles, bubbles, sprays, clouds and galaxies, surface or form aggregates to the existing clusters deposited before.

processes of polymerization, flocculation, fragmentation, charge transfer and evolution

. . . In the S.E., collision kernels are derived based on theories describing the microscopic phenomena
of microbial population.

such as Brownian diffusion and then the macroscopic parameters are obtained by the solution to the
The S.E. is a set of non-linear coupled partial differential equations, by which S.E. system.

microscopic description of particulate interactions explains how macroscopic
parameters evolve Iin space and time. The microscopic interactions are subsumed into
the agglomeration rate kernel b. In this study the macroscopic parameter is N(x), the
number concentration of clusters of size x at time t. Discrete and continuous forms of

As opposed to what is conventional in the S.E., here we observe the macroscopic parameters to
obtain the kernels. Discrete and continuous forms of the S.E. are shown in Eq. 2 where the
macroscopic parameters (number concentrations Ny, N(x) and N,) can be functions of space and

the S.E. are: time (s, t).
—1 - Theoretical comparisons and classifications of different flows are possible by solving the QSE
ONy 1 s k—i -k describing macroscopic transport phenomena to a surface under flow, such as:
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i—1 i—1 * Formation/adhesion of biofilms, organisms or bacteria on different materials and surfaces

Volcanic ash deposited on the ground

ON (x) 17 r  Particle impaction process in particle impactors
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Smoluchowski Equation (S.E.) d_; _ Npi(S, £)

The microscopic description of particulate interactions from which kernel b is derived, ¢

: : : : : QSEDiscrete: < 1 k1 >
can be governed on the basis of the following microscopic phenomena: d Ny, ki kit 1 i ok

— = Z(+aH ‘N, — a7k )+ —Z Ny _ib'7K7IN; — N, Z b7KN,

Brownian diffusion, Gravitational collection Van der Waals forces, Viscous forces, \ : i—1 2 i—1 i1

Fractal geometry, Thermophoresis, Electric charge, etc.
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Quasi Smoluchowski Equation (Q.S.E.)

N, : Rate of particles added from space to the surface
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Synthetic mono-disperse spherical particles were released " *.Fe .y < ¥7 ot %" .- "+ Probability kernels calculated and governing equations derived
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estimated. This also gives an estimation of rate of change in ~ “*. <" o oL L Y LN(1)= 0999 N, (1) - 031356 Npi(0), L Ng(t)=0.05269 N (1) - 0.048416 Ny (1)
Elustzers size. Ajs;ur?lng time mvarcliar:t kerne;s, dls:(crete :cirm of A @ . e L Ny1) = 031356 Ny~ 0205375 Npy(), .N0) = 0.04881 Ny (1)~ 0038624 Ny
g. 2 was used to form an over-determined system of linear

L N3 (t) = 0.20537 N1 (£) = 0.112166 Ny (), 4 Na(t) = 0.03862 Ny 1 (1) — 0.031594 N (1),

. Clusters deposited on thg surface. 10-p %NN) = 0.11216 N, 1 (t) — 0.074825 N, 1 (1), g—[Ng(T) = 0.03159 N, 1 (t) — 0.026361 N, 1 (1),
clusters circled black and 6-p clusters circled dashed red.

equations with respect to the kernels a. Solving the system, an
estimation of probability kernels were obtained and compared
to the their actual values. This method can be applied In
classifications according to different kernel functions at hand. Governed equations based on the calculated kernels

L Ns(t) = 0.07482 N .1 (1) — 0.052695 N 1 (1), L N1o(t) = 0.026361 N, 1 (1) — 0.02235 N p 1 (1),

We theorized and derived governing equations (QSE) of cluster growth and deposition on a surface versus time. One application of the governing equations could be in classification of different
physical phenomena according to the probability kernels by which the observed data will be best described. For a synthetic deposition as a test example, we extracted the probability kernels
which were Iin agreement with the given probabilities by which the data were produced.




