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A number of epidemiological studies have shown that exposure to elevated levels
of fresh vehicular emissions causes a wide range of adverse human health effects. Fresh
vehicular emissions contain a wide range of particle- and gas-phase species. Because such
emissions are emitted and diluted together, their individual impacts are difficult to
separate. Ultrafine particles (UFP), a focus of this work, may contribute to the
degradation of health associated with exposure to elevated levels of fresh vehicular
emissions. Further, because ultrafine particles are short lived, they have a low urban
background and thus are also an excellent tracer for fresh vehicle emissions.

An earlier mobile measurement study by our group demonstrated a large pollutant
impact zone, extending beyond 2.5 km downwind of a freeway in Santa Monica,
California during the hours immediately before and after sunrise [1], in sharp contrast to
daytime, when plumes dissipate within a few hundred meters. The current study explores
the variability of these extended freeway plumes at several locations (and geographies) in
Southern California. A mobile measurement platform (MMP) was employed to measure
vehicle-related pollutant concentrations on transects running perpendicular to four
freeway segments located on the coastal plain, in downtown Los Angeles near several sets
of foothills, and in an inland valley during the early mornings. Two transects passed
under the freeway (“overpass” freeways) and two transects passed over the freeway
(“underpass” freeways). In all cases, plume lengths on the downwind sides were measured
to be ~2 km or more ([2], Figure 1). Dilution rate coefficients were consistently about a
factor of ten lower than commonly observed for daytime.
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Figure 1. Variations in

background-subtracted
UFP concentrations with
respect to distance from
the freeway. Values are
normalized to  peak
concentrations. Over-
pass freeway transects:
Blue, Downtown LA
(DoLA) & green:
Paramount;  underpass
freeway transects: orange:
Carson & red: Claremont
(this study). Black dashed

and dotted lines Santa Monica (SM) [1]. Grey dotted line, daytime in West LA (WLA, Zhu et al.
[3]). Horizontal line: upwind background. Positive distance indicates indicate the downwind side.



Several factors were found to control pollutant plume length and the shape of the
decay curve downwind of freeways under stable conditions. In most cases, the geometry
of the freeway - transect intersection (underpass or overpass) divided the dependence of
decay characteristics on meteorological factors into two distinct groups (Choi et al., in
prep.). As expected, plumes were transported further when winds were perpendicular to
the freeway rather than parallel. Relationships with wind speed were complex; dispersion
increased with increasing scalar windspeed, but as resultant wind both increases
transport and is correlated with increased mixing, relationships are less clear. Variation in
vertical stability played a minor role, given that in all cases boundary layer ranged from
nearly neutral to strongly stable. Background-subtracted peak concentration (which is a
function of traffic flows and temperature) was a major determinant in the plume shapes.
While particle concentrations obviously do not influence mixing and dispersion, higher
pollutant concentrations decay more rapidly compared to lower concentrations for a
given amount of dilution with background air at fixed concentration.

Within the few hours after sunrise, the freeway plume begins to dissipate, and its
extent retreats back to a few hundred meters, as has been observed in many daytime
studies, although higher pollutant concentrations persist throughout the morning hours.
The absolute concentrations were more than double in the winter measurements than
summer, due to the interaction between the sunrise time and the timing of morning rush
hour; during the summer the sun rises earlier and begins to initiate mixing before the
morning rush hour has developed much [1]. The results are also provide evidence that in-
use gasoline vehicle emissions of ultrafine particles in general have declined [4].

The mobile monitoring platform also was used to measure real-time air pollutant
concentrations in a variety of built environments. These included the community of Boyle
Heights (BH, a low income community surrounded and traversed by several freeways);
Downtown Los Angeles (DTLA, adjacent to BH with taller buildings and surrounded by
several freeways); and West Los Angeles (WLA, an affluent community traversed by two
freeways), in summer afternoons of 2008 (all locations) and 2011 (WLA only). Significant
inter-community and less significant but observable intra-community differences in
traffic-related pollutant concentrations were observed both in the residential
neighborhoods studied and on their arterial roadways between BH, DTLA, and WLA,
particularly ultrafine particles (UFP). High emissions vehicles (HEV), defined as vehicles
creating plumes with concentrations more than three standard deviations from the
adjusted local baseline, were encountered during 6-13% of sampling time, during which
they accounted for 17-55% of total UFP concentrations both on arterial roadways and in
residential neighborhoods. If instead a single threshold value is used to define HEVs in all
areas, HEV’s were calculated to make larger contributions to UFP concentrations in BH
than other communities by factors of 2-10 or more.

Santa Monica Airport, an airport dominated by small gasoline powered airplanes
but also including ~10% small to intermediate sized jets located in WLA is a significant
source for elevated UFP concentrations in nearby residential neighborhoods 80-400m
downwind (see also [5]).

In the WLA area, we also showed, on a neighborhood scale, striking and
immediate reductions in particulate pollution (~70% reductions in both UFP and,



somewhat surprisingly, PM, ), corresponding to dramatic decreases in traffic densities
(20 - 85%) during a major freeway closure event ("Carmageddon") compared to non-
closure Saturday levels. Although pollution reduction due to decreased traffic is expected,
this dramatic improvement in particulate pollution provides clear evidence air quality can
be improved through strategies such as heavy-duty-diesel vehicle retrofits, earlier
retirement of HEV, and transition to electric vehicles and alternative fuels, with
corresponding benefits for public health.
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Figure 2. Box plots of pollutant concentrations measured on arterial roadways in BH in 2008 (fine
slant lines in white boxes), DTLA in 2008 (coarse slant lines in white boxes), WLA in 2008
(coarse slant lines in grey boxes), WLA in 20u (simple white boxes), and WLA adjacent to
SMA in 20u (simple dark grey boxes), and during “Carmageddon” (405 Closure): (a) UFP, (b)
PB-PAH, (c) NO, and (d) PM, . Red squares represent the mean values.
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Measurements

Instrument

CPC (TSI, Model 3007)

FMPS (TSI, Model 3001)

DustTrak (TSI, Model
8520)

EcoChem PAS 2000
LI-COR, Model LI-820

Teledyne API Model
300E

Teledyne-API Model
200E

Sonic Anemometer
(Vaisala)

Garmin GPSMAP 76CS

SmartTether™

KciVacs video

Measurement Parameter

UFP number concentration (10 nm ~
1um)

Particle size distribution (5.6~560 nm)
PM, ; and PM,, mass

Particle bound PAHs
CcoO
CcO

2

NO

Temperature, Relative humidity, \

Wind speed/direction
GPS

Vertical profiles of temperature, RH,
wind speed/direction

Video record

SmartTether™




Freeway plumes in the early morning



he Freeway Imprint is Many Times Larger

Before and Just After Sunrise (normalized data)
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The Atmosphere Strongly Traps

Pollution Near the Surface in the Early

Morning

Mid afternoon
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Santa Monica:

Summer is Cleaner; why?
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ampllng Area and Transects
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Wide Impact Area Downvs;inﬁdm(_)?Ffeeways
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Underpass Freeways
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" Fits Model to Observed Profiles to Extract Emission
Factor and Dispersion CoefficientS  [choiet al, submitted ]

Q. =Emission rate corrected with wind speeds
H = Source height
1.5m = Measurement height

Gaussian Plume

DisperSiOn m0dEI o, = Dispersion parameter
x = Horizontal distance from the source
1.5m+HY) 1.5m—HY
C(x,1.5m) = exp| — ( > ) +exp| — ( 5 )
o, 20, 20,
\
References =fdaton Land use Stability Class D'Sp.e".s"’”
form coefficients
Briggs (1973) E2 (slightly stable) a=0.03
d/i§tance B=0.3x103
@ X Rural
o. = Fa (moderately a=0.016
. . o @ X) stable) f=0.3x10"3
Dispersion Parameter
Urban E — F2 (stable) a=0.08

p=1.5x1073




The Model Fits the Obse
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stimating the Particle Number Emission Factor

’ Q. = Wind speed-corrected Emission rate (#-m-cm3)
Q..  (Traffic flow) : o
Q. =% 9ven = Particle number emission factor (PNEF)
2/ 27Z'Ue (#-mile-vehicle™)
Traffic flow =vehicles:-s™
l U, = Effective wind speeds [Chock, AE, 1978]
(wind speed + speed correction factor due to traffic wake)

\/ZQC °Ue

traffic flow)

with the mean values obtained from observations

qveh - (

N 27 X (8.12 ><104)>< (0.64m/s+0.2m/s)x10° Cm%n3 X300%min
(680.2 vehicles/5min)

= 7x10" particles-mi-vehicle™

This is 15% of the Particle Emission Factor measured in
West LA in 2001

4.9x10" particles-mi*-vehicle® in 2001 [Zhu and Hinds, AE, 2005]



Multivariate Regression Model
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Number conc. (><104 #. cm'3)

Predicted Profiles Match the Data Well
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As much as 50% of population lives within 1.5 km of freeways in
California South Coast Air Basin [Polidori et al., 2009]

About 11% of US households are located within 100 m of 4-lane
highways [Brugge et al., 2007]

Extension of pre-sunrise freeway plume up to 2 km has
potentially significant implication for human exposure to UFP
as well as other pollutants

Paramount



Air Quality in Several Los Angeles
Neighborhoods
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Ultrafine Particle Concentrations Vary
Substantially between Neighborhoods
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SumFﬁary

P

1. Early morning extension of freeway plumes far
downwind (> 2 km) is a general phenomenon in
Southern California, and presumably most locations
around the globe.

2. Data indicate a strong drop in emissions of ultrafine
particles over the past decade.

3. Plume intensity as well as met. Parameters control
pollutant plume lengths downwind of freeways.

4. Plume shapes and areal impact can be predicted from
routinely measurable parameters.

5. Behavior of UFP concentrations in neighborhoods is
sufficiently complex as to be easy to explain but
somewhat difficult to predict.



15 miles inland: UFP are higher in the

afternoon while other 1° pollutants are lower
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Transect Geometry Influences Plume Shape

Transects are small 2-lane
streets running through
quiet residential
neighborhoods
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Size Distribution of Atmospheric Particles
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O Mostly from vehicular emissions highly concentrated on UFP region:

~80% of the total number conc. but negligible
2010/

in mass conc. [Kumar et al.,

0 Formed generally by condensation in the diluting exhaust plume (semi-
volatile hydrocarbons and hydrated sulfuric acid) [Shi et al., 2000]





