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Real-time aerosol characterization is not only important for airborne pollutants but 
also for monitoring of continuous aerosol processes, such as the production of 
engineered nanoparticles. For instance, the primary particle and agglomerate sizes 
often govern particle properties and must be controlled in a narrow range in order to 
achieve certain product performance. Flame aerosol reactors that dominate the field 
in terms of throughput, cost and versatility have production rates up to 1 ton per hour. 
Here, real-time online diagnostics for particle size can assist process control, 
assuring production quality and resulting in significant cost savings. 
 Sampling these production streams, however, is all but trivial. Particle 
concentrations are as high as 1018 #/kggas, requiring an enormous dilution of the 
aerosol to quench particle growth processes. The probe has to withstand 
temperatures up ~1500 K and possibly corrosive environments. For this reason, 
mostly ex-situ methods have been used to determine particle size and morphology. 
 Here, an in-situ method for real-time determination of average agglomerate 
mass, volume, mobility and structure along with the constituent primary particle size 
is presented. It is performance-tested in continuous lab- and pilot-scale production 
lines for nanoparticles made by flame spray pyrolysis (FSP; Mädler et al., 2002).  
 
 A sampling probe for continuous extraction of the hot and highly concentrated 
aerosol was designed and constructed. Immediate dilution with adjustable cooling air 
flow rate allows effective suppression of coagulation. This enables in addition to 
continuous and real-time process monitoring direct measurement of the primary and 
agglomerate particle growth dynamics. 
 Online characterization of the fractal-like particles is achieved by combining a 
differential mobility analyzer (DMA) either directly with a condensation particle 
counter (CPC) or by passing the sample through an aerosol particle mass analyzer 
(APM), first (Figure 1). Thereby, the agglomerate size distribution as well as the 
average primary particle size is derived by applying a power-law correlation as 
proposed by Eggersdorfer et al. (2012). Results are compared against off-line 
particle size characterization by nitrogen adsorption and thermophoretic 
sampling/transmission electron microscopy (TEM). 



 
Figure 1: Experimental set-up with flame spray pyrolysis reactor producing zirconia nano-
particles, product filter, sampling probe with primary diluter positioned at 75-300 mm height 
above burner (HAB), secondary diluter and aerosol instrumentation. Following size 
classification with a DMA, the aerosol sample is either passed directly to a condensation 
particle counter (CPC) or via an aerosol particle mass analyzer (APM). This allows to obtain 
the primary as well as the agglomerate particle size and structure (Eggersdorfer et al., 2012). 

 
 
Figure 2: Growth of primary (filled symbols) and agglomerate (open symbols) particle Sauter 
mean diameters along the reactor centerline as measured by thermophoretic and aerosol 
(circles) sampling. The diameter of gyration (squares) and projected area equivalent 
diameter (diamonds) are obtained from TEM micrographs. Fair agreement with the BET-
measured primary particle size (triangle) is attained for both methods. After HAB ~100 mm 
the primary particle diameter stays rather constant while the mean agglomerate size 
increases throughout the reactor. A process model (line) by Gröhn et al. (2012) correctly 
predicts the product primary particle size but underpredicts early growth. 



Primary zirconia particle growth was shown to be completed at 100 mm above burner 
as a constant primary particle diameter was observed for downstream axial positions 
(Figure 2). At this height, average line-of-sight flame temperatures around 1400K 
were measured by infrared spectroscopy (Gröhn et al., 2012), indicating that 
sintering of zirconia nanoparticles ceases at this temperature. Figure 2 further shows 
how process simulations (line, Gröhn et al., 2012) correctly predict the product 
particle size but underpredict early particle growth.  

Similar-sized primary particles were also observed at all radial positions at 100 
mm HAB and downstream. Such homogeneity indicates well mixed conditions in the 
high temperature region of the flame where sintering takes place. As expected, the 
average agglomerate size was found to increase with axial distance from the burner 
(Figure 2). However, larger agglomerates were observed at the fringes of the aerosol 
plume attributed to prolonged residence time due to lower gas velocity there.  
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Process model: Gröhn, Pratsinis, Wegner (2012), Chem. Eng. J. 191, 491. 
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Scale-up toward Industrial Production 
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5000 g/h ZrO2 

Lab-Scale Pilot-Scale 
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SCHNEIDERTE NANOPARTIKEL.
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Off-line Particle Characterization 

→ Need for on-line and real-time diagnostics.   
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Nitrogen adsorption 

Analysis of collected product powder. 

Specific surface area and BET-equivalent primary particle 
diameter. 



Required: On-line Diagnostics for Particle Size 
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Gröhn, Pratsinis, Wegner (2012), Chem. Eng. J. 191, 491. 
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A) Process model validation: 
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Online characterization 

B) Process and quality control: 

Required: On-line Diagnostics for Particle Size 

Wegner , Schimmoeller, Thiebaut, Fernandez, Rao (2011), KONA Powder and Particle  29, 251. 



Previous Work 

 In-situ light scattering, e.g. 

Sorensen, Cai, Lu (1992), Appl. Opt. 31, 6547. 

Xing, Koylu, Rosner (1999), Appl. Opt. 38, 2686. 

Optical properties of particles, rather dilute concentrations 

 

 In-situ small-angle X-ray spectroscopy, e.g. 

Mueller, Kammler, Pratsinis, Vital, Beaucage, Burtscher (2004), Powder 

Technol. 140, 40. 

Synchrotron radiation, challenging theory 
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Wang, Shin, Mertler, Sachweh, Fissan, Pui (2010),Aerosol Sci. Tech. 44,97. 

Eggersdorfer, Gröhn, Sorensen, McMurry, Pratsinis (2012), J. Colloid 

Interface Sci. 387, 12. 
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Aerosol Diagnostics Set-up 

Eggersdorfer, Gröhn, Sorensen, McMurry, Pratsinis, (2012), J. Colloid Interface Sci. 387, 12. 

Medalia (1967), J. Colloid Interface Sci. 24, 393. 
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Particle Concentration and Temperature 

Profiles at the Centerline 
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Gröhn, Pratsinis, Wegner (2012), 
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Sampling probe 
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Goertz, Korp, Al-Hasan, Giglmaier, Nirschl (2011), Chem. Eng. Proc. 50, 836. 

Ulrich, Milnes, Subramanian (1976), Combust, Sci. Technol. 14, 243. 

Dilution factors up to 104 

Dimensions in mm 
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Thermophoretic Sampler 
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Well known: dm ≈ dpa  (e.g. Sorensen (2011), Aerosol Sci. Technol. 45, 765.) 
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Agglomerate 
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σg,p ≈ 1.46 (Df=3) 
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Online Process Control 
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1700 g/h ZrO2 

230 g/h ZrO2 



Conclusions 

 Aerosol diagnostics can be applied to high-temperature 

nanoparticle manufacturing processes.  

 On-line determination of primary particle and agglomerate 

size for understanding particle growth and process control.  

 Primary ZrO2 particle growth ceased at ~1400K (100 mm 

HAB). Computational model underpredicts initial growth. 

 Self-preserving size distributions are attained for primary 

particles and agglomerates. Large agglomerates may align 

or restructure inside the DMA. 

 Homogeneous primary particle size across the flame.  

Larger agglomerates are observed at the fringes. 
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Nanoparticle Production Unit 

at ARCI Hyderabad, India 

Capacity: 20 t/year 
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Thank you for your attention! 
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Agglomerate Mass-Mobility Scaling 



• Measures 
Temperature   

Species concentration 
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Line of sight measurement 

Tomographic reconstruction 
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FTIR Flame Temperature 



Fractal Dimension of Agglomerates 

8/2/2013 Arto Gröhn 

 CONFIDEN

TIAL 

26 

S.R. Forrest & T.A. Witten, J. Phys A. 12 (1979) L109-L117. 

Method:  

Algorithm of Forrest and Witten 
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Agglomerate Structure Characterization 

8/2/2013 Arto Gröhn 
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Mass fractal dimension1, Df Mass-mobility exponent2, Dfm 

Radius of gyration, rg Mobility radius, rm 

1. S.R. Forrest & T. A. Witten, J. Phys. A: Math. Gen. 12 (1979) L109-L117. 

2. K. Park, F. Cao, D.B. Kittelson & P.H. McMurry, Environ. Sci. Technol. 37 (2003), 577-583. 

3. C.M. Sorensen, Aerosol Sci. Technol. 45 (2011) 755-769. 
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Mass-Mobility Relation 

28 

1. A.I. Medalia, J. Colloid Interface Sci. 24 (1967) 393-404. 

2. P. Meakin, Adv. Colloid Interface Sci. 28 (1988) 249-331. 

3. S.N. Rogak, R.C. Flagan & H.V. Nguyen, Aerosol Sci. Technol. 18 (1993) 25-47. 

Surface area mean diameter from mobility size and volume  

Surface area 
mean diameter: 

6
va

v
d

a
 Average number of 

primary particles: va

va

v
n

v


Scaling of projected 
aggregate area:1 

aa = projected 
aggregate area 

D

a
va a

p

a
n k

a



 
   

 

Mobility in free 
molecular2 and 
transition regime:3 

4 a
m

a
d




 
 1 2 3

2

6

D
Da

va m

k
d d

v






 
  
 

ka = 1.0 & D = 1.07 for aggregates 
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