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Extended Summary

The emission trade-off between PM (particulate matter) and NO, is an issue of major concern in
automotive diesel applications. Measures need to be taken both on the engine and on the
aftertreatment sides in order to minimize the engine emissions while maintaining the highest
possible efficiency. Past research has shown that post injections can potentially reduce exhaust PM
concentration without any significant influence on the NO, emissions. However, an accurate and
general rule of how to parameterize a post injection such that it provides a maximum reduction of
PM emissions does not exist. Moreover, the underlying mechanisms are not understood thoroughly.
The experimental investigation presented here provides insight into the fundamental mechanisms of
soot formation and reduction due to post injections under different turbulence and reaction kinetic
conditions. The current work is based on measurements presentment in [1], where soot elementary
carbon is measured in the exhaust (using a Photo Acoustic Soot Sensor), in parallel with
measurements of the in-cylinder soot formation and oxidation processes using an Optical Light Probe
(OLP). The experiments confirm observations from earlier work which shows that soot reduction due
to a post injection is mainly based on two reasons: increased turbulence from the post injection
during soot oxidation and lower soot formation due to lower amount of fuel in the main combustion
at similar load conditions. A third effect of heat addition during the soot oxidation, which was often
mentioned in the literature, could not be confirmed. The interdependence between the post
injection timing and the soot formation progress is assumed to be an interaction between the spray
of the post injection and the soot of the main injection. This interaction is assumed to be beneficial
for the soot oxidation process and shows the highest exhaust soot reduction if the post injection
occurs around the in-cylinder soot peak (Figure 1). This in-cylinder soot peak is strongly dependent
on EGR-rate or swirl level.
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Figure 1: Absolute reduction of exhaust soot emission vs. the position of kL-maximum of the corresponding
operating point w/o post injection minus start of injection of the post injection (positive if post injection is
before the kL-maximum) [1].



The experimental data recorded at the engine showed that the exhaust emissions are strongly
dependent on the position (timing) of the post injection relative to the progress of the soot
evolution. However, the assumption of an interaction between the soot clouds of the main- and post
injection is only based on a higher probability of interaction due to higher in-cylinder soot
concentration since the OLP does not provide any information about the in-cylinder soot distribution.
In this work, additional experimental data, recorded on a constant volume chamber with high optical
access, has been compared with the measured in-cylinder data. 2D-2-Colour-Pyrometry has been
applied. The spatially resolved soot- distribution confirms an influence of the soot from the post
injection on the soot formed in the main injection for cases with short dwell, compared to no
influence for cases with long dwell between main and post injection. Furthermore, the enhanced
soot oxidation in the short dwell case is visible in Figure 2.
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Figure 2: Left: Heat release rate, injection signal and kL evolutions of a cases without post injection (black), with early
post injection (blue) and late post injection (red). Right: Corresponding post injection pictures of 2D-2-Colour-Pyrometry
of early post injection case (top) and late post injection case (bottom).

However, for diesel engine applications, the threshold post injection timing, where interaction
between the two soot clouds occurs is difficult to find, since the peak soot position is very sensitive
on several engine operating parameters like e.g. EGR rate. Furthermore, in a common production
diesel engine, the soot trace is unknown. Though the post injection application is a very fast acting
tool (cycle and cylinder resolved), but its parameterization is exceedingly difficult for a permanently
beneficial engine operation with respect to soot emissions.

[1] Barro C. et al. ICEF2012- 92075 Technical Conference, ASME, 2012
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Soot Formation in Diesel Engines

. Sootis the result of e
= Formation S
= Fuel pyrolysis gl s 2
= Formation and growth of PAHSs g g §
= Particle inception (nucleation) S L T
= Surface growth g l
= Particle coagulation and agglomeration 1/ A
= Oxidation Time ]
= Occurs concurrent to formation
= Requires sufficiently high temperature and
oxidant concentrations (O,, O, OH, ...) '-2»”.
= Heterogeneous environment of diesel Os—lﬁﬁf
CombUStion é-LiqUidFU‘B' [ Fuel-Rich Premixed Flame
=>» Formation and oxidation vary over space | oA re g oot o ool
as they are dependent on local O, |7 B sooOatonzone |
concentration and temperature | * oGt T
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Soot Characterization /7 Multi-Colour-Pyrometry
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Signhal Overview of Multi-Colour-Pyrometry

Aquired Signals after
Post Processing:

- 3 soot cloud
temperature
evolutions

- 3 kL evolutions

- Evolutions match
for perfect calibration
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Influence of EGR and IPS on In-Cylinder and Talilpipe Soot

Barro C. et al. ICEF2012- 92075 Technical Conference, ASME, 2012

4 engine operating points with
different EGR, swirl rate and
constant fuel mass

* Basis: A = 1.4, 28 % EGR swirl
valve: IPS (Intake Port Shut-Off)
closed

eLowered EGR: A = 1.5, 25 % EGR
IPS closed

*Increased EGR: A = 1.35, 30 % EGR
closed IPS

sLowered swirl A = 1.4, 28 % EGR
IPS open

-Minor influence on heat release rate

-Engine: Daimler OM 642, OLP via
glow plug bore

HRR [%/°CA],kL (scaled) [-], approx. injection rate [-]

Injection-, Heat Release Rate, kL and Soot Temperature w/o Post Injection
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Influence of Post Injections on In-Cylinder Soot in Detall

Detailed Investigation
of Post Injections:

- Post injections at 1,
1.5, 2 and 2.5 ms
after end of main
injection, 10% of
main injection fuel
mass

- Visible improvement
of soot oxidation rate
only for 1 and 1.5 ms
POI-timing

- Soot temperature
changes are

HRR [%/°CA],KL (scaled) [-], approx. injection rate [-]
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Variation of Post Injection Timing under Different Operating Strategies
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Influence of Post Injection on Exhaust Soot
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Influence of Post Injection on Spatial Resolved Soot Evolution |
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Influence of Post Injection on Spatial Resolved Soot Evolution 11
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Influence of Post Injection on Spatial Resolved Soot Evolution 111
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Summary and Conclusions

= Soot evolution reacts sensitively to changes in turbulence and oxygen
availability (in contrary to the heat release rate)

= Soot reduction due to post injection is depends on soot formation and
oxidation progress at the post injection timing

= Post injections increase soot oxidation rate if interaction between the
individual soot clouds occurs

= Too late post injection inhibits oxidation due to soot formation of post
injection itself
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