Nano-sized Metal Oxide Emissions from IC-Engines
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Internal combustion engines can emit metal oxides originating from various sources such as engine wear,
lubrication oil, fuel ashes, fuel additives or coatings from exhaust gas after-treatment systems.
Conventional on-road fuels usually contain relatively low metal contents, whereas most of the
lubrication oils often contain much higher metal concentrations. Engine wear metals are usually present
in all internal combustion engines. Metal compounds collected in lubrication oil can be re-entrained into
the cylinder and then oxidized during combustion. Some metals can even be vaporized and re-nucleide
as very small particles in a size range typically below 30 nm. These metal oxide particles might be present
in the exhaust aerosol either as free metal oxide particles or attached to soot particles.

Introduction
Toxicological effects of nanoparticles

Particle emissions of diesel vehicles can cause acute and chronic harm at lung and cardiovascular system.
The biological impact depends on the particles' ability to defeat the human body defense. Crucial factors
are particle size and solubility. Almost insoluble particles are hazardous especially in small size ranges.
Toxicological studies have shown increased toxicity of nanoparticles compared to micrometer particles
of the same composition, which has raised concern about the impact on human health. Nanoparticles
can enter alveoli in the lungs, pass biological barriers including placenta and blood—brain barrier, and
enter cells. The high surface area and chemical composition of the nanoparticles (NPs) play an important
role in biological activity and toxicology, but toxicology depends also on cell types. The binding of NPs to
bacterial proteins can inhibit enzymatic activity. Epidemiological studies on ultrafine particles have
shown increased cancer risk after long-term exposure of diesel vehicle drivers enhanced allergy tendency
at traffic burdened sites and enhanced risk of heart attack."**

Figure 1 shows that particles < 10 um can intrude deep into the lung. Particles smaller than 100 nm show
a high deposition rate in the alveoli, which increase with decreasing particle diameter. Tissue
penetration from alveoli to the blood vessels, too, is highly dependent on particle size. Therefore, the
particle dosage should be weighted with this size influence.
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Fig. 1: Deposition of inhaled particles in the alveoli ™ The mean particle sizes are: Diesel soot about
100 nm; Sl soot about 50 nm and metal oxides about 15 nm.

Particulate emissions of different Vehicle types

Not only diesel vehicles show high particulate emissions, but also direct injection (DI) gasoline
vehicles have a tendency to increasing emission of particulate matter compared to multi-port
injection (MPI) vehicles.”® The following graphic compares particle number concentration (PN)
for different vehicle types i.e. multiport injection (MPI) and direct injection (DI) gasoline vehicles,
diesel vehicles without and with diesel particle filter (DPF) in the loading (load) and regeneration
phase and vehicles fueled by compressed natural gas (CNG)
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Fig. 2: Particle number concentration (PN) for different vehicle types



The following table summarizes the potential sources for metallic particles in vehicle emissions. Further

details can be found elsewhere.>*®"

Tab. 1: Potential sources for metallic particles in vehicle emissions

Sources for metal emissions Metals Estimated amount
Abrasion e.g. Fe, Al, Cr, Ni, Cu, Pb abraded metal mass
from piston ring, cylinder liner, ca.0.1to 1 mg/km

valve cams, valves, bearings

Lubrication oil e.g. Zn, Ca, B, Mg Zn:0.1-0.2 %, Ca: 0.5 %,

B: 0.09 %. Mg: 0.002-0.004 % ,..

old vehicles: up to 1 % oil of fuel
consumption

Fuel several metals in traces,
Heavy metals like Pb and
Mn are limited by law
(e.g. in Germany BzBIG
1971: Pb <150 mg/kg
fuel)

Experimental

The vehicle characteristics as well as the sampling procedures and analysis are displayed in the following
graphs and tables. Online particle analysis has been performed with SMPS. Size fractionated chemical
analysis of nanoparticles in vehicle emissions were carried out by sampling with an electrical low
pressure multi-stage impactor ELPI with subsequent acid digestion in a microwave system and chemical

analysis with plasma mass spectrometry ICPMS. Further details can be found elsewhere.**®’
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Fig. 3: Test and sampling setup

(A) for passenger cars and 2-wheelers
(B) for diesel engine tests




Tab. 2: Operation points for vehicle and diesel engine tests

Renault R18 Honda 450 CBR Nissan Qashqai Scooter Piaggio
Idling Idling Idling Idling
e 120 mn. e 120 min. e 120 mm. e 120 min.
50 knv/h 50 knv/h 50 km/h 50 knmv/h
e 20 min. e 20 min. e 20 min. e 20 min.
NEDC Euro 3 NEDC Euro 3-C1
e 1187 sec. e 1568 sec e 1187 sec e 1170 sec
e 11.028 km e 13.065 km e 11.028 km e 6.110 km
e 33.6km/h e 30.0 km/h e 33.6km/h e [8.8km/h
A ISO 8178/4 C1-cycle foi‘ construction site engines
()]
5
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Idling RPM 10 % CD
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N. Heeb, EMPA Report 167985
Fig. 4: Used Test cycle 1ISO 8178/4 C1
Tab. 3: Characteristics of lubrication oils for cars and 2-wheelers
Lubrication oil | Renault/Honda | | Quashqai e Piaggio
Used Fresh Used Fresh Used Fresh
il SAE 15W-40 SAE 5W-40 SAE 5W-40
Ash content [%} 1.8 1.6 1.6
[mg/ke]
Sulfur 6439/3170 3011 2490 2725 5000 4800
Calcium 2100/1600 1700 1438 1584 2200 2200
Phosphorous 886/797 869 753 895 1200 1100
Zine 1016/934 967 893 984 1300 1200
Iron 6.2/7.9 1.5 32 0.9 14 0.9
Nickel DL DL 0.03 0.02 DL 0.11
Copper 0.77/ 3.78 0.01 0.04 0.03 33 0.0001
Operating tume 1000/4000 25000 km 1000 km
since oil change km/




Tab. 4: Lubrication oil 15 W/40 and fuel for Liebherr D934S and D914T diesel engine

Viscosity kin 40°C - mm’/s
Viscosity kin 100°C 13.98 mm”/s
Viscosity index - (--)
Density 20°C - kg/m’
Pour point -25 °C
Flame point - °C
TBN 8.4 mg KOH/g
Sulfur ashes 10 770 mg/kg
Sulfur 3 360 mg/kg
Mg <10 mg/kg
/n 1200 mg/kg
Ca 2630 mg/kg
P 1110 mg/kg
Density (at 40°C) 0.820 - 0.845 g/ml
Viscosity (at 20°C) 2.0-3.2 mm’/s
Flame point: min 62°C
Cloud point :max - 10°C
Filtering limit CFPP max. - 20°C
Coke residue max. 0.02 g/100g
Ash Traces
Sulfur max. 0.001 g/100g
Cetane index min. 52 — 54
Boiling analysis min. 98 vol %
Calorific value (lower) min. 42.5 MJ/kg
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Fig. 5: CVS Background: Lab air and CVS tunnel only



Results

The investigation within this study focused on the particle emissions. Gaseous emissions are not
reported. The particle mass emissions and their composition are summarized in table 5. Figure 6 shows
the particle size distribution (measured by scanning mobility particle sizer SMPS) for Liebherr 924 engine
without DPF and with DPF at the 8 tested operation points. At the point 8, i.e. idling at 800 RPM, the
particle number concentration in the smaller size range is relatively low. A possible explanation for this
fact might be the lower soot generation at idling point 8. Therefore, possibly emitted metal species are
emitted as free metal oxides, whereas at the other operating points the concentration of soot particles is
much higher that the metals can be bounded to the soot particles like shown as an example in Fig. 8.
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Fig. 6: Particle size distribution (SMPS) for Liebherr 924 engine (A) without DPF and (B) with DPF at 8

operation points. Point 8 is idling at 800 RPM.
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Fig. 7: SEM image of metal NPs, here cerium oxide, bound to soot particles

Tab 5: Particle mass emissions of filter samples for vehicles

Vehicle Renault R18 Honda 450 CBR Nissan Qashqai Scooter Piaggio

Cycle NEDC Idling Euro 3 Idling NEDC Idling |[Euro3-Cl| Idling

Time [3] 3540 7200 4710 7200 3540 7200 3510 7200
PM total

¢ mg/km 0.531 0.277 0.639 0.492

e meg/hr 8.800 2.079 3.520 433

If metal emissions lead to nanoparticulate emissions at very low size ranges, it was suspected that the
phenomenon is also visible for petrol engines. The following graph shows the size distribution measured
by SMPS for measurement of two cars and two 2 weelers. All measurements were carried out at two
different steady-state conditions, i.e. at a constant speed of 50 km/h and at idling. The Renault R18 car
has, both at the medium load point and at idling, relatively high particle emissions. A bimodal
distribution was observed at part load. For the Honda 450 CWR Motorbike modality of the size
distribution is clearly evident and the emissions are relatively high. Also the 1-cylinder/4-stroke scooter
engine of the Piaggio Scooter showed significant particle emissions at 50 km/h which were even higher
than for the Honda motorbike. However, the bimodal distribution is less evident. The .particle emission
at idling operation was lower than expected. The second car Nissan Qashqai, which was of newer engine
technique showed relatively low particle emissions which hardly exceed the background, neither at 50
km/h nor at idling. Further investigations on metal oxide emissions of different vehicle types have been

already published®*.
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Fig. 8: Particle distribution (SMPS) at 50 km/h and idle for cars: (A) Renault R18 and
(B) Nissang Quahqai motorbikes: (A) Honda 450 and (B) Scooter Piaggio

Conclusion

Emissions of metal oxide particles can occur for all types of internal combustion engines. Even if clean
fuels are used, lubrication oil remains as a potential source for metal oxide particles. Full-wall-flow
particle filter systems show high filtration efficiency in diesel exhaust gas after-treatment, but this study
will demonstrate that they can be also useful to remove not only soot but also metal oxide emissions



from exhaust gas. This makes filtration technology promising not only for diesel engines (soot filtration)

but also for exhaust gas cleaning of other engine types.
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