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The increased usage of biomass as a fuel for heat generation in private households raises the 
question of the potentially toxic effects of particulate matter generated during combustion. As it has 
been demonstrated that fine (<2.5 μm) and ultrafine (<0.1 μm) particles cause stronger adverse health 
effects than larger particles (ref. 1, 2, 3), we analysed particles with diameters of up to 1 μm, whilst 
particles larger than 1 μm were removed by a cyclone separator. 
 
Two sources of combustion particles were employed, reflecting the most common modes of residential 
heating: An automatically-fed log wood cauldron (Fröling FHG Turbo 3000, 30 kW) and a manually-fed 
wood pellet stove (Buderus Blue Line Pellet 1, 7.6 kW). Both heat generators were shortlisted on a 
white list of the German federal government, rendering their employment eligible for subsidies. To 
mimick a typical use of the generators, they were employed either under optimised aeration or under 
reduced aeration (suboptimal burning conditions). 
 
The nanoparticles generated were analysed according to aerodynamic diameter and to number using 
a Scanning Mobility Particle Sizer (SMPS), and an elementary analysis was performed using energy 
dispersive X-ray analysis. Using the automatically fed log wood cauldron, only minor differences were 
observed in the particle size and composition between optimal and suboptimal aeration conditions. In 
contrast, the nanoparticles generated from the manually-fed pellet stove showed an increase in the 
aerodynamic diameter by a factor of approx. 5, which was reflected by a dramatic increase of carbon 
in the elementary analysis. 
 
To analyse the toxic potential of these nanoparticles, we employed two different experimental settings: 
First, we simulate the exposure to inhalation of combustion aerosols in an in vitro lung model, 
employing the human lung cell line A549 at a liquid-air interface in the Karlsruhe exposure system 
(Fig. 1; ref. 4). Second, we employed suspensions of combustion nanoparticles in classical submersed 
A549 cell culture. 
 
The exposure at the air-liquid interface resulted in cellular stress at longer exposure times, presumably 
due to desiccation, limiting the amount of particles to which the cells could be exposed. To measure 
the pro-inflammatory response, we determined the gene expression of human interleukin 8 (IL-8) by 
quantitative real time PCR, as well as its release into the culture supernatant by a bead-based 
immunodetection assay on a Luminex machine. At the exposure time tested (2.5 h), no significant 
cellular stress response was detectable. 
 
Hence, in order to evaluate the toxicity of the nanoparticles generated, we applied the particles 
generated from the pellet stove under suboptimal combustion conditions as a suspension in cell 
culture medium. We analysed the gene expression of the two cytokines interleukin 6 (IL-6) and IL-8 by 
quantitative real time PCR. Furthermore, we assayed cell membrane integrity as a proxy for cell vitality 
by measuring the release of the otherwise cytoplasmic enzyme lactate dehydrogenase into cell culture 
supernatant, which is indicative of disrupted cells. 
 



At concentrations of up to 100 µg/ml, the nanoparticles generated did not influence IL-8 gene 
expression levels, whereas at 400 µg/ml the expression increased approx. 8-fold. On the other hand, 
amorphous carbon nanoparticles (Printex® 90, average particle size 14 nm) elicited an approx. 8-fold 
increase in IL-8 gene expression already at a concentration of 50 µg/ml. Thus, Printex® 90 was 
roughly ten times more efficient than the combustion nanoparticles in evoking a pro-inflammatory 
response. 
 
 

 
Fig. 1: Karlsruhe exposure system for in vitro testing of airborne nanoparticle emissions from 
combustion processes. 
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1) Combustion source: Private-owned heat generators
- subsidised employment of renewable fuels

2) Particulate matter: Nanoparticles in focus
- Karlsruhe exposure system

3) Biological model: A549 tumour cell line
- liquid-air interface vs. submerse culture

4) First results & outlook

Overview
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Biofuels – subsidised renewable resources

5-fold
increase
in
acreage
(12 % of
total land
use for
agriculture)

Total agricultural land use (2009): 16.9 million ha



4

Use of wood in Germany (2008): 
43 % for energy supply

72.0 x 106  m3

Construction, furniture,
etc.

54.7 x 106  m3

Energy

Total: 127.0 x 106  m3
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

Model sources of combustion particles: 
Two commercially available heat generators

Buderus Blueline Pellet 1
Pellet stove (7.6 kW),
manually fed

Fröling FHG Turbo 3000
Log wood cauldron (30 kW),
automatically fed

Shortlisted by Bundesamt f. Wirtschaft u. Ausfuhrkontrolle (BAFA)
to be eligible for state subsidies.
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Combustion parameters

Pellet stove:

Condition  1:

Optimal aeration

Condition  2: 

Suboptimal aeration

Log wood cauldron:

Condition  1:

Optimal aeration

Condition  2: 

Suboptimal aeration
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Nanoparticle selection for exposure: 
Sketch of the experimental set-up

●  Individal mass flow w/ 250 hPa underpressure          ●  Exposure chamber: 39°C 

●  Gas flow:  37 °C; 85 % relative humidity                     ●  6 exposures in parallel

●  Three sampling outlets (e.g. for scanning mobility particle sizer (SMPS), impactor)
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Nanoparticle selection for exposure : 
Experimental set-up

Probennahme Schrank

Karlsruhe exposure chamber

Monitoring unit:
- temperature
- CO2
- CO
- O2

Heat exchanger

Cyclone1:10 Dilution
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Cell cultures under exposure
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Number and size distribution of particles (SMPS analysis)

Pellets:

Log wood:

Optimal combustion:  Diameter ca. 55 nm Suboptimal combustion: Diameter  ca. 85 nm
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Scanning electron microscopy: 
Transwell® inserts

Exhaust gas, filtered Pellets, suboptimal aeration

Log wood, suboptimal aeration
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Elementary  analysis:

Optimal aeration Suboptimal aeration

Pellets

Log wood
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Elementary  analysis:

Optimal aeration Suboptimal aeration

Pellets

Log wood

K

K
K

S S

S

Log wood

Pellets
K

Al

K

AlAl

Al

O:

Legend:
C:

O:

Legend:
C:

O:

Legend:
C:

O:

Legend:
C:



14

Stress signalling in model lung cells

Immunofluorescence microscopy
detecting  Zonula Occludens 1 (ZO-1)
(via Cy3-labelled secondary antibody)

At the level of mRNA: transcription of
- interleukin 8 (IL-8)
- intercellular adhesion molecule 1 (ICAM-1)

IL-8

IL-8

IL-8IL-8

sICAM

sICAM

sICAM

sICAM

A549: Type II lung cells (tumour line)

Cellular response to stress: inhibition of growth, decrease in viability

At the protein level: Secretion of
- interleukin 8 (IL-8)
- soluble intercellular adhesion molecule 1 (sICAM)
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Gene expression and release of IL-8 
after 2.5 h of exposure at air-liquid interface
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Gene expression after submerse exposure: 
ICAM, IL-8 and IL-6 analysed by qRT-PCR
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A549 cell viability after submerse exposure: 
Kinetics of LDH release

Concentration: 100 µg/ml; exposure range: 0-72 h
Printex® 90 vs. particles obtained from pellet combustion
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Summary

Except for the pellet stove under suboptimal conditions, the 
particles are mainly composed of inorganic matter (salts).

As little carbonaceous material reaches the cells, no stress 
response was detectable at air-liquid interface.

Submerse exposure of cells to particles from suboptimal 
pellet combustion resulted in a response comparable to 
Printex® 90, though weaker by one order of magnitude.
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Outlook

Less sophisticated burners will be included in further 
studies, better reflecting the real market.

Different cells lines will be employed, widening the basis for 
evaluation.

The scope of the study will be broadened including 
alternative biofuels.
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