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qI—} Overview éﬂm
Mixing states of black carbon (BC):

external mixture coated internal mixture
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This presentation aims at showing that:

. black carbon (BC)

‘ inorganic salts and

organic matter (OM)

\r

"

* mixing state of BC is important for its climate effects.
« a substantial fraction of freshly emitted BC is externally mixed.

« atmospheric aging processes lead towards internally mixed BC.
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w( =] Sources of atmospheric black carbon (BC) 7~

anthropogenicand natural
forest fires

atmospheric BC is predominantly of anthropogenic origin
— we can get things moving

domestic heating and cooking
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o= ... and we have done so In the past
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BC emission inventory by source =
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q;—} Importance of atmospheric BC é@m

« BC nanoparticles are inhalable, insoluble and cytotoxic.
= Known to have adverse effects on human health (e.g. Laden et al., 2000).

 BC nanoparticles strongly absorb solar radiat“e‘s
= Direct effect on the earth’s radiative bw.

%

 BC nanoparticles have th I to act as cloud condensation nuclei

(CCN) and ice nuclew atmospherlc clouds.
= Indirect eff th's radiative balance through modification of cloud

properﬂe«\



e Hygroscopic growth and composition of aerosol particles:
ﬂ; HTDMA (Hygroscopicity Tandem Differential Mobility Analyzer)
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HTDMA data provide additional information on:
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Atmospheric aging processes of BC
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external
mixture

v

coagulation
acquisition of condensable gases
cloud processing

internal
mixture

.

mixing state of atmospheric BC evolves towards internal mixture (to be shown)



RSl Hygroscopic growth of ambient aerosol %%

“Typical examples”
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Hygroscopic Growth Factor, GF [-]
= number fraction of externally mixed BC decreases typically with air mass age
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= -{jm» Mixing state of BC in Zurich aerosol (urban)
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Collaboration with ETH Zurich: Herich et al., JGR, 2008

experimental setup: ambient sample —> HTDMA — ATOFMS
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Hygroscopic growth factor at RH=82% [-]

= BC in Zurich aerosol is partially externally mixed and partially internally mixed
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Direct climate effect:
o light absorption enhancement by coating on BC core

dry coating
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Nessler et al., J. Aerosol Sci., 2005.

» Coating enhances light absorption by the BC core.

* Enhancement factor does not exceed a factor of ~2-3.



AL SR ST Direct climate effect: é Loon
ﬂ} TOA anthropogenic forcing from BC e
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= factor of ~2 difference in the estimated radiative forcing by BC
depending on the assumed mixing state



AL SCHETRER T Indirect climate effect: % e
scavenging of BC into cloud droplets —

#’
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~ increasing air mass age

— BC scavenging increases with air mass age



BC characterization: e

o] SP2 (Single Particle Soot Photometer by DMT) i

Key features of the SP2:

Uses laser-induced incandescence (LII) to detect refractory BC.
Detection of single particles.
Quantitative measurement of BC uninfluenced by other material in the particle.

Qualitative and semi-quantitative information on the mixing state of BC.

Technical paper: Stephens et al., J. Appl. Opt., 2003
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Indirect climate effect:
mixing state of BC and CCN activation (SP2 data)
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Cloud residues and interstitial particles of an orographic cloud in urban outflow (Holme Moss, UK).
Courtesy of D. Liu, M. Flynn, H. Coe (Univ. of Manchester) and B. Andrews, J. Ogren (NOAA)
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Refractory mass fraction of BC

< more coating

= coating increases cloud condensation nuclei (CCN) activity of BC
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e [={}m Ice nuclei activity of BC with/without sulphuric acid coating
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Laboratory experiments at the AIDA chamber by Mdhler et al., JGR., 2005
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= sulphuric acid (SA) coating reduces ice nuclei activity of BC
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Jm  Lab experiments: example combustion particles o

EURO 3 diesel car: wood pellet oven: wood pellet oven:
at 60 km/h starting phase stable burning phase

Exhaust is diluted and sampled into PSI's 27 m3 smog chamber prior to further characterization.
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SRS Possible mixing states %ﬂm

external mixture of BC and scattering compounds o P

2 different particle types: o [}
« BC internally mixed with scattering compounds .

* pure scattering particles

internal mixture of BC and scattering compounds .
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e /= Jm Number and mass size distributions of BC cores (SP2)
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e EURO 3 diesel

e pellet oven (starting)

dN/dlogDp; normalised

/.
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Number size distribution of BC cores:
® — EURO 3 diesel
m — pellet oven (starting phase)
¢ —— pellet oven (stable phase)
=~
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1000

Mass equivalent diameter of BC core [nm]

= shape of BC core size distribution is similar for all three examples

dM/dlogDp; normalised

e pellet oven (stable)
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B —— pellet oven (starting phase)

¢ —— pellet oven (stable phase)
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(absolute emission factors are of course different)
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OM : BC ratio 4‘&%

Organic matter (OM) measured on-line using an Aerodyne HR-ToF Aerosol Mass Spectrometer

OM : BC massratio [-]

4.0
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3.0

2.5

[ ]
OM > BC

2.0
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L0 - oo e e e 1:1-----
0.5 ]

EURO 3 diesel Pellet oven Pellet oven
(60 km/h)  (starting phase) (stable phase)

= EURO 3 diesel: BC dominates over OM.
= Pellet oven: BC is only a minor mass fraction.
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o —[-{Jm BC core size distr. compared to number size distr. s

EURO 3 diesel pellet oven pellet oven
(60 km/h) (starting phase) (stable phase)
g ‘ number sizé distribution (SMPS): | |
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= EURO 3 diesel: number of particles = number of BC cores

= Pellet oven (both): number of particles >> number of BC cores
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e [{j» Number fraction of particles with BC core i

all with BC core

<
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Number fraction of particles
containing a BC core [-]

[
none with BC core |:> 0.0 | | |.

EURO 3 diesel Pellet oven Pellet oven
(60 km/h)  (starting phase) (stable phase)

— EURO 3 diesel: ~every particle contains a BC core
= Pellet oven: dominant fraction of particles without BC core
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Mixing state determination
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EURO 3 diesel pellet oven pellet oven
(60 km/h) (starting phase) (stable phase)
e ©

A

X
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e ={}m Different growth factors indicate different composition 7% ==z

40 ] 3 | : ; : ; : ! 1 !
35 - m EURO 3 diesel (60 km/h)
20— MW Pellet oven (starting phase)
@ Pellet oven (stable phase)
25 - 3 3 3 3 § 3 1 3

1.0 1.2 1.4 1.6 1.8 20
Hygroscopic growth factor at 93% RH [-]

« EURO 3 diesel (60 km/h): BC + hydrocarbon-like organic matter.
* Pellet oven (starting): remains to be ascertained.
* Pellet oven (stable): inorganic salts (~50%) + OM + BC.
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e {j»  Mixing state determination (continued) 4‘&%

EURO 3 diesel
(60 km/h)

pellet oven
(starting phase)

pellet oven
(stable phase)

X
0:‘ ®
X
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—@— Pellet oven (stable phase)
—@— Pellet oven (starting phase)
—&— EURO 3 diesel

increasing coating thickness

increasing optical size
Median optical particle diameter [a.u.]

1 \\\

I I I I I I I I I
140 160 180 200 220 240 260 280 300 320 340

Mass equivalent diameter of BC core [nm]

increasing BC core size >

= coating thickness: pellet stable >> pellet starting >> diesel at 60 km/h



UL s i Ascertain pellet oven starting phase: %m
o - employ HTDMA+SP2 In series

CHEMIE

exhaust —> HTDMA —> SP2

HTDMA:

Mode at GF~=1.15-1.20:
= not pure BC, <5% inorganic salt

Mode at GF=1.30-1.35:
= mainly organics and/or BC; ~5-10% inorganic salt likely

SP2 (number of BC cores):
— only minor fraction of particles contains detectable BC
= BC cores found in either growth mode!

SP2 (mean BC core size):
— at most ~20 vol-% is BC
— all BC cores have a thick coating

Number fraction [-] GF-PDF []

Volume fraction [-]

16 = [Growth factor probability distribution (GF-PDF)
7 |(inverted HTDMA measurement)
12— g e s SRS
. Dry diameter selected:
g — m 200 nm
® 150 nm
4 .
0
T T T PP PRIN P
0.8 — '"|Number fraction of BC-containing parliclesl """
0.6 — ...................... S
B)
074 — T . .......................................... - ...............................
0'2 — l. ..................................................................
0.0 — e — — I
0.4 —{-|D) BC volume fraction | :
’ : (BC-containing particles only)
03—~ i SN SURURURUNS SRUSNURUS SUUURU S
0.2 —-memmebemeeme b . _________________________
. me u :
0.0

1.10 1.20 1.30 1.40
Growth factor at RH=95% [-]
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w( = Final result of mixing state determination 7=~

LABOR FUR

EURO 3 diesel
(60 km/h)

pellet oven
(starting phase)

pellet oven
(stable phase)

X

X
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e[ Jm Simulating atmospheric aging process in the lab 7~ ==

Pl ' primary soot
volatile organic compounds (VOC)

o ?

Effect of VOC-photochemistry on BC?

More on the aerosol formation potential from VOC emissions of diesel and wood combustion exhaust in:

Session 2:  “Primary organic aerosol and secondary aerosol formation potential from a Euro 3 diesel passenger car” (R. Chirico)

Session 6A: “Investigation of primary and secondary organic aerosols from wood combustion with a high resolution time of flight
aerosol mass spectrometer” (M. Heringa)
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e ~[-{Jm Atmospheric aging: effect of SOA on hygroscopicity Aoy

ﬂ condensation of secondary organic aerosol (SOA) produced from
photochemical reactions of volatile organic (VOC) emissions

10 ; ‘ ‘ ‘ ‘ ‘ ‘ ‘
| M Pellet oven (starting phase)
g — B Pellet oven (starting phase)
] . B ﬂ + SOA from VOC emissions
o | Y

GF-PDF []

———
1.0 1.2 1.4 1.6 1.8 2.0

Hygroscopic growth factor at 93% RH [-]

HTDMA indicates condensation of SOA = increased coating thickness
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e - jm» Atmospheric aging: effect of SOA on coating thickness 7/~

AN

P

—&— Pellet oven (starting phase)
Pellet oven (starting phase)
+ SOA from VOC emissions

increasing optical size
increasing coating thickness

Median optical particle diameter [a.u.]

I I I I I I I I I I
140 160 180 200 220 240 260 280 300 320 340

Mass equivalent diameter of BC core [nm]

increasing BC core size >

= increase of coating thickness confirmed by SP2 measurement



RS Conclusions and outlook émﬂw

—

This presentation aimed at showing that:
* mixing state of BC is important for its climate effects.
« a substantial fraction of freshly emitted BC is externally mixed.

« atmospheric aging processes lead towards internally mixed BC.

Furthermore:

 Recent developments of single particle detection techniques and
aerosol mass spectrometry will — hopefully — allow us to better
understand the properties and evolution of atmospheric BC
during its live-cycle and its interactions with clouds.
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s Qrganic Matter and Non-Refractory Inorganic Salts: -
o Aerodyne HR-ToF-AMS —=

MCP
111 TOF Mass Spectrometer
PreAmp
-
~ 1 I
W mode P Signal to ADC
il
|
[ el
1l ]
Chopper — ]
il C Z
@°pe2%°, po.p.-;. T:T' 99050.9©90°,0,0°90%9,0°90%8, g ® o o .‘l
1 N / ¢ w Thermal Vaporization &
. 70 ev El lonization
PToF Region
Aerodynamic Lens
(2 Torr)
Turbo Pump Turbo Pump Turbo Pump

Particle Inlet (1 atm)

Aerosol mass spectrometer here mainly used for quantitative detection of organic matter.
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ATOFMS: Bipolar Time-of-flight mass spectrometer

Chemical composition of single particles (qualitative)
Nd-YAG solid state laser, A = 266 nm

Particle

= = Inl=t
Ql; . . o —start start g
300 ‘0 Particls
Z. p g
' Sizing

| @M \LQ | Baiticls
| ﬁ' L [ | [Composition

g + ‘.e S/

= =

2 4

s M = /\ A
mlzoct? mlzoct’

D. Gross, Carleton College, Based on T3, Inc. schematic.



AU S ST BC Characterization:. ém
ﬂ;} Single Particle Soot Photometer =

®
° Sample
Incandescence: Aerosol Incandescence:
~630-800 nm ~350-800 nm Technical paper: Stephens et al., J. Appl. Opt., 2003.
Figure: Gao et al., Aerosol Sci. Technol., 2007.
®
®
®
High reflectivity °
mirror

N
x
ﬁmi HPump Diode

X ‘ N A Nd:YAG crystal
AN lasing at 1064nm
B v ‘.
“Optical 3
~ filters - ‘
Scattered light -~ T Scattered light -
high gain ~. Avalanche - low gain
photodetectors

 Detection of single particles.
 Quantitative measurement of BC uninfluenced by other material in the particle.

 Qualitative information on the mixing state of BC.
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e - Jm Diesel Exhaust Processing in the PSI Smog Chamber e
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@[ jm Diesel Exhaust Processing in the PSI Smog Chamber 77~z

Euro 3 diesel car running at 60 km per

Filling the chamber
In ~15 min




q;l—} Qualitative Measurement of Coating Thickness (SP2) é@;ﬁ

=@- Pellet oven (stable phase)
| =@= Pellet oven (starting phase)
| == EURO 3 diesel

Incandescence peak delay [us]

[ e e B L B
150 160 170 180 190 200 210 220 230 240 250

BC core mass equivalent diameter [nm]
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== Qualitative Measurement of Coating Thickness 7+ ~<:

Cg_ -@- Pellet oven (stable phase)

';' —@- Pellet oven (starting phase)

@ =@- EURO 3 diesel

% Pellet oven (starting phase + photochem. processing)

S e — N

@ | | 3 3

. —— —+—
—0— —

2

3 ——

S | |
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BC core mass equivalent diameter [nm]



q;—} Number Size Distributions (SMPS) 4‘&%

EURO 3 diesel pellet oven pellet oven
(60 km/h) (starting phase) (stable phase)

number size distribution (SMPS):

Number size distribution
(normalised dN/dlogDp)

2 2 4I- (IS 8 2 él‘r I'(Iiléll 2 2 4I- 8 !
1000 100 1000 100 1000
Mobility diameter [nm] (SMPS)

= normalised number size distributions are similar in all three cases
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40

35 _ B EURO 3diesel (60 km/h)
. B Pellet oven (starting phase)

1, 307 m Pellet oven (stable phase)

I-Dl- 25 | | m Pellet oven (starting phase)
0O 20- + SOA from VOC emissions
H | | 1 1 1 1 1 1 1 1
@)

1.0 1.2 1.4 1.6 1.8 2.0
Hygroscopic growth factor at 93% RH [-]
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Scavenging of Black Carbon il

Close to
sources

Far from
sources

Aging effect

Sampling site scav.BC Type of site Reference
Po Valley
(italy) 0.06 Urban Hallberg et al. (1992)
Kleiner Feldberg (Germany) 0.15 Rural Hallberg et al. (1994)
Puy de Dome 0.33 Mid altitude (1465m) Sellegri et al. (2003)
(France)
Mt Sonnblick . . .
(Austria) 0.45 High altitude (3106m) Kasper-Gielb et al. (2000)
Rax 0.54 Mid altitude (1644m) Hitzenberger et al. (2001)
(Austria) ' g '
Great Dun Fell 0.57 Rural - Coastal Gieray et al. (1997)
(UK.
Jungfraujoch (Switzerland) 0.61 High altitude (3580m) C"(Zz'goe;)a"
Mt Sonnblick . . .
(Austria) 0.74 High altitude (3106m) Hitzenberger et al. (2000)
Spitzbergen 0.80 Artic Heintzenberg and Leck (1994)
(Norway)

Cozic J. et al., ACP, 7, 1797-1807, 2007
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Follow up U.S. six cities study:

Increase in daily mortality with increase of PM2.5 by 10 mg/m3 (Laden et al., 2000):

- Mobile sources:

3.4%

- Coal combustion: 1.1%

- Mineral dust:

~0%
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o - Aerosol direct and indirect effects i

Top of the atmosp here

Scattering & Unperturbed Increased CDNC Drizzle Increased cloud height  Increased cloud  Indirect effect  Heating causes cloud
absorption of cloud (constant LW(C) SUppression, (Pincus & Baker, 1994) lifetime on ice -::qu!is burn-off
radiation (Twomey, 1974) Increased LWC {Albrecht, 1989)  and contrails  (Ackerman et al., 2000)
\ Direct effects ) Cloud afbedo effect! \__Cjoud fifatime effect! 2nd indirect effect! Alhrecht ef.fec:t__/
1st indirect affectf

Tworney affect
\ v )

IPCC 2007
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Vorführender
Präsentationsnotizen
BC measurements from the SP2 measured from a CVI and a standard inlet during a cloud period, shown by the circle, at Holme Moss.  In the top panel the BC mass is shown to reduce substantially when sampling the residuals.  The mass fraction of BC to total mass in single aerosol particles sampled also reduces in the residuals compared to the interstitial indicating that activated BC particles are internally mixed and are coated. Consistent with this, the bottom panel shows the incandescence signal is significantly delayed compared to the scattering signal when sampling the residuals compared to the interstitial particles, again indicating that activated BC particles are thickly coated.
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. et JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111, D20211, doi:10.1029/2006JD007315, 2006
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Limitations in the enhancement of visible light
absorption due to mixing state

Tami C. Bond,' Gazala Habib,' and Robert W. Bergstrom®
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Absorption amplification
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Fig. 2. Coating effect for absorbing cores as present in the JFJ fine mode aerosol (winter case). Depicted are four cases for
different x.¢ values. Each sub-figure shows the evolution of the coating factor y (left ordinates) with increasing shell thickness
for coating with material corresponding to the soluble part of the dry JEJ fine mode (scenario (1), solid line), coating with water

(scenario (2), short dashed line). and coating according to JFI hygroscopic growth (scenario (3) for D, /Dy = Dgry/Dl._ long

dashed line). For this last scenario, fine mode RH enhancement factors for absorption, 7€ are given in the right ordinates. The
o dry .
dry JFT aerosol exhibits D2/ Dy = D2 y /D1 = 2.2 (winter case).
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diesel 60 km/h /07.11.08 / SP2 data at 11:18

pellet starting: 24.11.08; SP2 data at 10:58 and 18:00

pellet stable: 19.11.08; SP2 data at 11:31
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RH=93%, D=inf

NaCl: 2.67
H2S04: 2.27
NaNO3: 2.26
Na2S04: 2.11
NH4NO3: 2.09
NH42S04: 1.92

kappa=0.1: 1.33
kappa=0.2: 1.54
kappa=0.4: 1.85
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