

Investigation of Morphology and Volatility of Ultrafine Diesel PM Using Atomic Force Microscopy (AFM)

Marc C. Besch

Arvind Thiruvengadam

Srikanth Raghavan

Charter Stinespring

Mridul Gautam (Program Director)

Department of Mechanical and Aerospace Engineering,
West Virginia University

Objective

Global Objective

To characterize toxicity as a function of volatility of ultrafine diesel particulate matter.

Specific Objectives

- To image and study the physical characteristics of volatile diesel nanoparticles under atmospheric conditions.
- To develop a suitable metric for volatility of diesel PM.

Background

- SEM/TEM have been the preferred methodologies for investigating morphology of diesel PM.
- SEM analysis of volatile diesel PM is constrained by the following two factors:
 - Observed size range of volatile diesel particles (5-50nm)
 - The presence of vacuum inside the SEM chamber
- Studies have documented different evaporation behaviors of volatile nanoparticles during SEM/TEM analysis. These behaviors have been attributed to the composite nature of volatile diesel PM [1].

[1] Mathis, U., Kaegi, R., Mohr, M., Zenobi, R.,2004. TEM analysis of volatile nanoparticles from particle trap equipped diesel and direct-injection spark-ignition vehicles. Atmospheric Environment, 38, 4347-4355.

Figure 1

Figure 3

Figure 2

- Images (from our lab) show the continuous change in particle morphology with continuous exposure of sample to SEM vacuum and intensity of the electron beam.
- The evaporation pattern seen in this image is consistent with findings reported by Mathis et al. [2004]

Background

- Atomic Force Microbalance (AFM) imaging is performed at atmospheric conditions. This type of imaging would yield the most accurate morphological description of the volatile diesel PM.
- Image of the particle is constructed only through atomic level force interactions between the AFM tip and the sample and not by any physical interactions with the sample; hence, the shape, size and characteristics of the particles are preserved.
- AFM can be used for detailed imaging down to 1nm sized particle, provided the substrate roughness is smaller than the particle size.

Experimental Setup

Sampling and Analysis Setup

- Monodisperse diesel PM is deposited on sample substrates.
- Three different substrates are being considered for sample collection
 - Cleaved Mica (rms-roughness 0.1nm)
 - High Order Poly Graphite (HOPG)
 - Copper grids

Sampling and Analysis Setup

 Pico SPM II model AFM is operated under tapping mode conditions.

Analysis Procedure

Concurrent analysis using AFM and SEM

Analysis Procedure

- Atomic force spectroscopy can reveal useful information about surface atomic bonds.
- Force feedback statistics can be established in relation to the post SEM particle size statistics.
- This information would give insight into the different formations of volatile PM.

Preliminary Results

 The study involves choosing a suitable substrate, with good particle adhesion capabilities and also flat background topography.

Figure: HOPG substrate rms-roughness = 1.18nm

Preliminary Results

Detailed images of diesel soot were obtained

Conclusion

- Atomic force microscopy has proven to be a very useful tool in analyzing diesel PM under atmospheric conditions.
- Determination of a suitable metric for volatility will depend on particle size statistics that would be obtained from concurrent AFM/SEM.
- Image processing analyses (in progress) will provide information on changes in surface area and volume of particles.

Acknowledgements

- Prof. Charter Stinespring
- Srikanth Raghavan
- Staff of Surface and Materials Studies Laboratory, Department of Chemical Engineering, West Virginia University