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Extended summary:

In this work, we integrate previously developed models for engine combustion
and soot formation.

The engine code we consider is the Stochastic Reactor Model (SRM), which
uses detailed chemistry and takes into account convective heat transfer and turbulent
mixing. The main strength of the SRM is its capability of qualitatively predicting
emission trends of CO, CO,, NOy, and unburnt hydrocarbons at reasonable
computational cost of 1-2 hours per engine cycle. This enables convenient multi-
cycle, sensitivity, and parameter studies.

As soot model, we use SWEEP, a population balance solver based on a Monte
Carlo method. One of the most striking features of SWEEP is its ability to
accommodate up to thousands of internal coordinates, or in other words highly
detailed particle descriptions covering aggregate structure and chemical composition.

In order to couple the two codes, a detailed chemical Kkinetic mechanism
describing the combustion of Primary Reference Fuels (PRFs, mixtures of n-heptane
and iso-octane) is extended to include small Polycyclic Aromatic Hydrocarbons
(PAHS) such as pyrene, which function as soot precursor species for particle inception
in the soot model. The extended chemical kinetic mechanism contains 208 species,
about 50 of which are involved in the soot precursor chemistry, and 1002 reactions.
We validate the mechanism against a variety of experimental data sets for fuel-rich
laminar flames obtained from literature.

The integrated model provides not only averaged quantities as functions of
crank angle like soot mass, volume fraction, aggregate diameter, and the number of
primary particles per aggregate for example, but also more detailed information such
as aggregate and primary particle size distribution functions, and specifics about
aggregate structure including images similar to those produced with Transmission
Electron Microscopes (TEMs). In addition to that, the chemical composition of soot
aggregates is modelled in quite some detail. Surface chemistry, including growth and



oxidation reactions at functional sites on the surface of particles, i.e. edges of PAHSs,
are taken into account. Since tracking every reaction of every molecule is
computationally prohibitive, a statistical representation of PAHs and their functional
sites is employed. This chemical description allows for example to plot distributions
of aggregate C/H ratio and PAH ring count versus aggregate collision diameter.

The combined model is applied to simulate an n-heptane fuelled Homogeneous
Charge Compression Ignition (HCCI) engine which is operated throttled at an
equivalence ratio of 1.93 with an Exhaust Gas Recirculation (EGR) rate of about
20%. In-cylinder pressure and heat release predictions show satisfactory agreement
with measurements. Particle-laden gases are extracted from within the cylinder
through a snatch sampling valve and are analyzed by means of a Scanning Mobility
Particle Sizer (SMPS) and a High-Resolution Transmission Electron Microscope
(HR-TEM). We find that our simulated aggregate size distributions as well as their
time evolution qualitatively agree with those obtained experimentally. It is also seen
both in the experiment and in the simulation that soot emissions in terms of mass stem
mostly from recirculated aggregates, whereas in terms of number mostly from newly
formed ones. The simulation also shows that the largest aggregates are recirculated in
the trapped residual gases for possibly several cycles before being emitted from the
engine.

An important open question in soot research is the transition from pure gas-
phase chemistry to the particulate phase, i.e. molecules held together in a particle
through physical forces. In our model, two possible pathways from the gas-phase to
the particulate phase are considered: inception, i.e. dimerization of pyrene molecules,
and condensation, i.e. addition of a pyrene molecule taken from the gas-phase to an
existing particle. We studied how the ratio between the rates of these two processes
affects aggregate morphology. In line with expectation, we find that, if inception
dominates, aggregates consist of large numbers of very small primary particles,
whereas if condensation dominates, aggregates consist of comparatively small
numbers of large primaries. We note that the peak of the aggregate size distribution
early in the formation phase, which is found here well below 10 nm, moves towards
larger sizes with increasing importance of condensation, while the collision diameter
of the largest aggregates remains largely unaffected.

The present study focused on fully premixed engine operation. However, we
have also taken first steps to extend this work towards operating modes which utilize
direct injection such as partially stratified HCCI as well as conventional Compression
Ignition Direct Injection (CIDI) engines. The time evolution of the cylinder charge in
the Kamimoto diagram, i.e. in equivalence ratio/temperature phase space, proves
particularly useful when analyzing emission formation for stratified operation.
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Engine model: SRM

Stochastic Reactor Model (SRM)
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PAHSs In gas-phase chemistry

 Hongzhi R. Zhang

e Before: PRF+NOX,
157 species

o After: PRF+NOXx+
variety of PAHs and
highly unsaturated
HCs, 208 species
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Soot model: site-counting

Describe soot particles by 9+N dimensional state space (ARS-SC-PP model):
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PAH reaction steps

Armchair ring growth 5-member ring desorption  6- member ring desorption
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Soot Iin engines!
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Averaged soot quantities

Total number of soot aggregates
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Rates of soot processes
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Aggregate size distributions (I)
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Aggregate size distributions (1)
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Aggregate size distributions (l1)
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Role of EGR
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Sampled aggregates (I)
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Sampled aggregates (ll)

Experiment, sampled at ~16 CAD ATDC
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Aggregate composition pdfs (I)

large inception rate
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Aggregate composition pdfs (I
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Inception vs. condensation
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Future engine soot models (I)

 Partially stratified HCCI 5 Probailty density function
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Future engine soot models (I1)

Soot formation in a partially stratified HCCI engine:
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Waelcome to the website of the Computational Madeliing Group! We develop and
apply modem numerical methods to problems arising in Chemical Engineering
The overall aim is to shomen the development period from research bench to the
industrial production stage by providing insight into the underlying physics and
supporting the scale-up of processes to industnal level

The group currently consists of 20 members from various backgrounds. We are
keen to collaborate with people from both within industry and academia, so
please get in touch i you think you have commaon interests

The group’s (esearch dvides naturally into two inter-related branches. The first of
these s research into mathematical methods, which consists of the development
of stachastic particle methods, computational fluid dynamics and quantum
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methads we have developed in addition to well established techniques. The main
application areas are reactive fow, combustion, engine modalling. extraction
nano paricle synthesis and dynamics. This research is sponsored on vanous

levels by the UK, EU, and industry
2

Markus Kraft . Head of the CoMo Group

http://como.cheng.cam.ac.uk

COMPUTATIONAL Markus Kraft
MODELLING mk306@cam.ac.uk
GROUP






