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Background

Modern engines increasingly rely on the combination of
electronic engine controls and exhaust aftertreatment
devices to achieve low emissions.

Various deviations from “ideal operation” typically result
In substantially higher emissions.

Small number of vehicles and small portion of total
operating time have a disproportionately high
contribution to the total emissions.



Example: On-road tests of CNG buses
(Pittsburgh, USA, 1996-99)




Example: On-road tests of CNG buses
HC emissions deterioration rates
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Example: On-road tests of CNG buses
Differences among identical vehicles
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Why on-road measurements?

When evaluating benefits of a fleet-wide deployment of
a new technology, high emissions vehicles and high
emissions episodes cannot be ignored as “outliers”, but
must be characterized and accounted for.

On-road measurements using portable on-board
systems allow for testing of a large set of vehicles
under a wide range of operating conditions.

Measurements can be done during normal everyday
operation of the tested equipment.



Evaluation of aftertreatment devices

Use one monitoring system. Run separate identical tests
with and without aftertreatment, compare.

+ Relatively easy test
— Tests have to be repeatable
Real-time or proportional sampling instrumentation

Use two monitoring systems, one upstream, one
downstream of the aftertreatment

+ Tests do not have to be repeatable
— More difficult realization of the test
Instrumentation has to measure in real-time (1 Hz)



Repeatability of on-road measurements

Instrumentation:

- Five-gas (HC, CO, NO, CO,, O,) “garage” analyzer

- Light scattering device for PM concentration measurements
- Sampling: No dilution, no heating of the line

- Exhaust flow: Computation based on engine rpm, intake air
temperature and pressure, engine parameters and exhaust composition

- Second-by-second data
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7.3-liter V-8 electronically controlled direct-injection turbodiesel



On-road tests on a test track can be repeatable

Bus operating on different blends of diesel fuel and di-methyl ether (DME)
Emissions measured using Manhattan Bus cycle driven on a 1,6 km test track

Manhattan Bus Driving Cycle - target road speed —Manhattan_Bus
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Test-to-test variance: < 10%o for computed total PM mass




Measurements in ordinary traffic are

poorly repeatable

Example: VW Golf / Jetta cars powered by diesel fuel and

vegetable oil. Multiple runs along a 20,9 km suburban-highway-city

route.

Unlike in laboratory tests, comparison is done on a distance basis
(x-axis: distance from start of the test)
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Example: VW Golf car powered by diesel fuel and vegetable oll.
Multiple runs along a 20,9 km suburban-highway-city route.
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Simultaneous upstream-downstream
sampling

More weight, higher power consumption, decreased
system reliability

Impossible to sample from a laminar flow upstream of
the aftertreatment due to exhaust system geometry of
most engines

But: Most diesel particles < 1 um; if sampling PM, or
PM, s, sampling error is relatively small compared to
other factors

Pilot studies done using a simple light-scattering device



Simple on-board systems can be capable of repeatable

measurements in the lab even at —~0.01 g/kWh levels

(but no claims about accuracy)

2000 International 3400 truck, DT-466-E turbodiesel, CRT trap

CBD cycle driven on a chassis dynamometer

PM concentrations measured with a light scattering device, exhaust flow computed
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On-board PM concentrations measurement using
a light scattering instrument

» Samples raw, undiluted exhaust from the tailpipe using 6 mm sample line
» Real-time measurements of PM scattering efficiency

» Robust, easy to use, low power consumption

» Data requires considerable interpretation
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On-line diesel oxidation catalyst evaluation

. A

Simultaneous
Upstream /
Downstream
Sampling
(2 monitoring
Systems)

Exhaust sampling
port before catalyst,
4” probe, unheated
line, no dilution

Exhaust sampling at
tailpipe
V4” probe, unheated
line, no dilution

Construction equipment, World Trade Center, New York



On-line diesel oxidation catalyst evaluation

Three sampling locations: Identical sample ports upstream and

downstream of DOC, ordinary probe at the tailpipe

Two monitoring systems (light scattering device for PM concentrations)
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Engine-out vs. tailpipe-out: New York City ferries
(Staten Island Ferry, Manhattan <-> Staten Island)

e True in-use testing

e 2 x Caterpillar 3516 V-16
1155 kW drive engines

» Baseline for biofuels and

SCR evaluation

e Sampling at turbocharger
outlet AND at stack end
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On-line diesel oxidation catalyst evaluation

Tl

e In-use emissions testing on construction equipment
during regular operation at the World Trade Center no. 7
site, New York, NY

e Operation not repeatable and difficult to simulate

e Simultaneous upstream and downstream sampling

— Downstream — Upstream «  Eff[%]

N
(@)
‘ »
2
[
N
<
>
[%0]

|
()]
S 4
>y
»
1
W
Q
>
iciency

+ 20%

H
o
|
>
» B
>np
»
>
>
2
>,
> > B » »

5 - YR 10%

DOC eff

0 I I I I I I I I I I | O%
16:58 16:59 17:00 17:01 17:02 17:03 17:04 17:05 17:06 17:07 17:08 17:09 17:10




On-road emissions from recycled frying oil study

VW Golf / Jetta 1,9 TDI cars with GreaseCar vegetable oil conversion

Fuels: Highway diesel fuel and a mix of recycled frying oil from different sources

Vegetable oil heated to ~60 C fuel temperature at injection pump inlet
20,9 km suburban / highway / urban test route
Emissions measurements upstream and downstream of DOC
Data still being analyzed
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Passenger car DOC efficiency — diesel fuel
VW Jetta 1,9 TDI, 20,9 km test route in ordinary traffic

PM emissions [mg/s]
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Passenger car DOC efficiency — vegetable ol

VW Jetta, 20,9 km test route in ordinary traffic
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Passenger car DOC efficiency — diesel vs. vegetable oll

VW Jetta, 20,9 km test route in ordinary traffic
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Passenger car DOC efficiency — difference in catalysts
20,9 km test route in ordinary traffic
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Passenger car DOC efficiency — diesel fuel vs. vegetable oil
20,9 km test route in ordinary traffic

Idle (also prolonged idling)
Low exhaust and catalyst temperatures
PM dominated by organics

Transient high loads
Overfueling conditions
Relatively infrequent
PM dominated by soot
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During bulk of the medium load operation, PM concentrations are lower
for vegetable oil; but mean PM concentrations are higher, suggesting that
a large contribution to the total comes from transients




Passenger car DOC efficiency — diesel fuel vs. vegetable oil
Mean vs. median values — median values suppress transients
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PM emissions vs. engine torque - Diesel fuel

PM concentration [relative]

PM emissions vs. engine torque - Vegetable oil
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Passenger car DOC efficiency — diesel fuel vs. vegetable oil

Diesel oxidation catalyst efficiency - Diesel fuel

Diesel oxidation catalyst efficiency - Veg. oil
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PM dynamics within the exhaust system

e Secondary growth of PM
e Deposition, storage and re-entrainment of PM

Most pronounced
— during and following idle and low loads
— with long exhaust systems
— with high aerosol fraction of PM

Must be differentiated from the aftertreatment device
effects



Effect of prolonged idling on PM emissions

1999 Freightliner truck, CAT 3406 engine, ~150,000 miles 8-hour extended idling test Idle Aire

Technologies, Knoxville, TN, December 17, 2001
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Effect of prolonged idling on emissions
during subseguent driving

e Class 8 truck idled for 8 hours at high
idle, then driven for ~32 miles on an
interstate highway

e PM emissions were sampled at the
turbocharger outlet (engine-out) and
at each stack (tailpipe) using three
portable, on-board systems

30-mile trip following an 8-hour period of high idle with AIC
Truck: 1999 Freightliner, Caterpillar 3406 14.6-liter, 475-hp engine, 182,700 miles
Testing conducted by Clean Air Technologies using portable on-hoard emissions

monitoring systems at Idle Aire Inc., Knoxville, TH, December 17, 2001 2400
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Field test — excavator with diesel particulate filter

Emissions measured simultaneously upstream & downstream of DPF
during a field test designed to mimic real-world operation

Typical test run, construction equipment with diesel particulate trap
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Example: Effect of driving style
on particulate matter emissions
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Crude evaluation of overall diesel oxidation
catalyst function by CO measurements

Extreme case: Bus catalyst operational only during sustained high load operation
Measurement is far from accurate (repair-grade analyzer used), but useful for the purpose.

Cold
start Heavy urban traffic Freeway o
e a0 1 2500
Q [ ] h\ ] J ﬂ | 11 ﬁ n I Hﬁ HMr th T
- (AT W, \ T MO gl VI W T 209°
o PRIINIE ﬂ I, ] O P A I
c 1 | u (KL | g “ [l M
57 J ( [ \I ‘ \ b | + 1000
= I — | IRV N ] IO S
5 4
3:15 13;30 13;45 14;00 14;15 14;30 14:42
0,08 100%
Green — catalyst efficiency
o oA e i i | i - 50%
N ! WJ&»A-- N 006
& I WW
m - -
~loos {{ Red - emissions upstream of DOC >
8 Blue — emissions downstream of DOC O
n 0,04 - QC)
- 0
a2 )
= e
0,02 - 0
5 2
©
0,01 ]
@®©
@)
o
13:15 14:4




Discussion — PM sampling,
PM measurement using light scattering

e Dilution at the sampling port upstream of aftertreatment adds to the
complexity of the system

e No dilution, no heating of the sampling system — secondary growth of
PM in the sampling system, plus condensation of water vapor contained in
the exhaust on particles

e Low concentration — counting of individual particles possible but
generally not possible without dilution

e High concentration — “aggregate” number but some size information can
be obtained with very fast sampling

e Response ~ d° for particles << wavelength of light

e Response ~ d? for particles >> wavelength of light

e Response ~ d° if particles grown to uniform size

e For soot, mass ~ dfd, where fd = fractal dimension of particles

e Complexity of issues requires careful use and thoughtful, application-
specific calibration with other methods; still, results might not be accurate



Discussion — accuracy of on-road measurements

On-road testing Inspection programs
Wide intermediate area High-volume, fast, low-
Development and pilot cost field testing
deployment of new Goal is to identify high
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Crude evaluation of overall particulate trap
function by visual inspection

Visible soot: Signs of No visible traces of soot =
mechanical problem Trap function probably OK



Conclusions

e Aftertreatment device evaluation requires, after initial
development but before mass deployment, testing of a large set of
vehicles under a variety of conditions; such testing can be done on
the road

e Studies done using a simple on-board system show that
repeatable measurements can be obtained by replicating
dynamometer driving cycles on a closed road; tests can be then
done alternately with and without the aftertreatment device

e Ordinary operation (i.e., of a vehicle on the road) is generally
poorly repeatable; in this case, measurements can be done by
simultaneous sampling upstream and downstream of the
aftertreatment device

e Studies done using a simple on-board system show that errors
due to non-isokinetic sampling upstream of the device appear to be
relatively small (compared to other sources of error)

e Simultaneous emissions measurements upstream and
downstream of an aftertreatment device appear to be a
feasible way of evaluating its efficiency in real-world
operation.



	Real-time, on-road measurements of diesel exhaust aftertreatment�device PM removal efficiency
	Background
	Example: On-road tests of CNG buses�HC emissions deterioration rates
	Example: On-road tests of CNG buses�Differences among identical vehicles
	Why on-road measurements?
	Evaluation of aftertreatment devices
	On-road tests on a test track can be repeatable��Bus operating on different blends of diesel fuel and di-methyl ether (DME) �E
	Measurements in ordinary traffic are poorly repeatable
	Simultaneous upstream-downstream sampling
	Simple on-board systems can be capable of repeatable measurements in the lab even at ~0.01 g/kWh levels                       
	On-board PM concentrations measurement using a light scattering instrument
	On-line diesel oxidation catalyst evaluation
	Three sampling locations: Identical sample ports upstream and downstream of DOC, ordinary probe at the tailpipe�Two monitoring
	On-road emissions from recycled frying oil study
	Passenger car DOC efficiency – diesel fuel�VW Jetta 1,9 TDI, 20,9 km test route in ordinary traffic
	Passenger car DOC efficiency – vegetable oil�VW Jetta, 20,9 km test route in ordinary traffic
	Passenger car DOC efficiency – diesel vs. vegetable oil�VW Jetta, 20,9 km test route in ordinary traffic
	Passenger car DOC efficiency – difference in catalysts�20,9 km test route in ordinary traffic
	Passenger car DOC efficiency – diesel fuel vs. vegetable oil 20,9 km test route in ordinary traffic
	Passenger car DOC efficiency – diesel fuel vs. vegetable oil Mean vs. median values – median values suppress transients
	Passenger car DOC efficiency – diesel fuel vs. vegetable oil
	PM dynamics within the exhaust system
	Effect of prolonged idling on PM emissions
	Effect of prolonged idling on emissions during subsequent driving
	Field test – excavator with diesel particulate filter�Emissions measured simultaneously upstream & downstream of DPF�during a 
	Discussion – PM sampling, �PM measurement using light scattering
	Crude evaluation of overall particulate trap function by visual inspection
	Conclusions
	eth_vojtisek_addendum.pdf
	Acknowledgements




