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Differentiation between sources of particle-induced oxidative stress:
surface area versus organic compounds
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At present it is commonly hypothesised that the surface toxicity of soot particles originates
from adsorbed redox-active components, which cause oxidative stress responses by reactive
oxygen species (ROS) that in turn may lead to pulmonary or even systemic inflammation.

In this study we address the question whether the inflammatory response of mice to particle
exposure can be predicted by the in vitro assessed oxidative potential of these particles. To
this end we assessed the oxidative potency of six types of carbonaceous NPs (10 to 50nm in
diameter; combustion and spark-discharge generated particles; 1 to 20% OC content) by
measuring the consumption of an indicator antioxidant, ascorbic acid, in a cell free,
physiologically buffered system. There was a good linear correlation between the in vitro
oxidative potency of the different particles and their specific surface area. Furthermore,
comparison of the oxidative in vitro effect and the in vivo inflammatory response (PMN
influx into the lung 24h after intratracheal particle instillation) revealed a good linear
correlation for five out of the six NPs investigated here, i.e., particle surface area can be
directly related to the in vitro and in vivo response. The only exception was the SootH sample
(high-OC flame soot; OC = 19%), for which the in vitro test underestimated its in vivo
toxicity by a factor of 3. Since this was not observed for the other high OC sample
investigated here (diesel exhaust particles (DEP); OC = 20%), the OC content alone could not
account for this discrepancy. Hypothesizing that bioavailability of OC plays an important
role, we searched for specific genetic expression markers by gPCR and immunoblotting of
mouse lung samples to identify those particle types with bioavailable toxic organics. Among
all candidates of inducible phase | and Il detoxication enzymes our expression analysis
detected only the cytochrome P450 oxidase CyplALl to be significantly induced by the OC
rich particles, namely SootH and weaker by DEP. Since metabolic activation of aromatic
hydrocarbons by CyplAl is known to generate intracellular oxidative stress, this suggests that
bioavailibilty of OC may contribute to the in vivo inflammatory response of NPs.

In summary, adequate prediction of in vivo particle toxicity based on in vitro tests requires an
in vitro test for the oxidative potential related to particle surface area combined with a test for
the bioavailibilty of particle adsorbed bioactive compounds, such as CyplA1l expression.
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Particle Toxicity:
Hypothetical Mode of Action
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Sources of Particle Induced Oxidative Stress
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Investigated Carbonaceous Nanoparticles

PrintexG (30-60 nm) DEP (18-30 nm) Printex90 (12-17 nm)
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Investigated Carbonaceous Nanoparticles

Pigment Black Spark Discharge Flame Soot Diesel Exhaust Particles
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PMNs (103)

In Vivo Toxicity in Mice

Proinflammatory Effects of Intratracheal Instilled NPs

Surface Area Correlation
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Surface Toxicity
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IS
Particle Surface Toxicity
a conseqguence of
Particle’s Own Oxidative Properties?



How to Assess Oxidative Reactivity of Nanoparticles?

Oxidative potency of NPs assessed in a cell free system:
Consumption of the anti-oxidative capacity of ascorbate
as a measure for the oxidative surface reactivity.

PHOTOCHEM
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OxEffect [nmol Ascorbate]

Oxidative Potency Assessed by the
Consumption of Vitamin C In Vitro
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Correlations: In Vivo [ In Vitro Effects and
Surface Area / In Vitro Effects
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Pigment Black
*Printex90

*PrintexG

Because of Organic Mass Content?

Spark Discharge
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Expression Profiling to Identify Genes
Suitable as Marker for Bioavailable Organics

Lung RNA extraction 24h after Particle Instillation
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Expression Profiling to Identify Genes
Suitable as Marker for Bioavailable Organics

Lung RNA extraction 24h after Particle Instillation

Phase | and Il Detoxification Protein Expression (Western Blot)
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Cyplal as Marker for Bioavaliable Organic Compounds



Localization of Cyplal by Immunohistochemistry

Immunhistological Detection of CYP1A1 Expression

IHC by Shinji Takenaka

Detection of CYP1AL positive cells only in SootH, and to a weaker
extend in DEP, but not in SootL instilled lungs.




Role of CYP1A1 in PAH-Detoxification

Diagram of Oxidative Stress During Phase

1 + 2 Detoxification
(Nebert et al., IBC 2004)
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Model for Particle Toxicity Related to Oxidative Stress

Toxicity driven by:
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Possible Explanation of Discrepancy:

Ox. Effect / BET Surface Inflammation / Ox. Effect
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Conclusion:

Modelling Inflammatory Efficacy by One or Two Parameters
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