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SOOT
• Definition:  Soot is a product of incomplete flame

combustion of hydrocarbon fuels at a given
value of fuel/oxygen ratio λ (stoichiometric c. at λ = 1.0)
Stoichiometric Combustion: CnH2n+2 + (1.5n + 0.5) O2 nCO2 + (n + 1)H2O

• Soot = EC (=BC) + Organic Phase (OC)
• Ubiquitous occurrence (on a global level)
• 10-50% of all tropospheric particulate matter is 

carbonaceous
• Worldwide anthropogenic emissions:  12-24 

Tg/yr (Penner, 1998):  N.B. Uncertainty!
• Long range transport observed (Arctic Haze)



Chemical Model of Soot Structure
(Sergides et al., 1987)
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SOOT (cont.)
• The only atmospheric aerosol with a sizable optical 

absorption in the UV/VIS range
• Remarkable influence on climate (positive radiative

forcing), public health (inhalation of nanoparticles) and 
tropospheric chemistry (reducing properties)
– Decrease in albedo (SSA) owing to absorption of radiation (short- and 

longwave radiation)
– Increase in cloud albedo owing to activation of CCN and decrease in 

precipitation (Twomey)

→
SSA = 0.85

No GH 
Gases!

JJA Surface Temperatures (Hansen, 2002)



Custom-designed Co-Flow Device for 
reproducible generation of decane (C10H22) 

soot:  Diffusion Flame



Control of Soot Production is mandatory in view of its Effects on Kinetics

Unstable flickering flame Stabilized (controlled) flame

CAST or Co-Flow Device



Elemental analysis for several types of soot 

 

Elemental analysis 

Author Soot (λ) C(% wt) H(% wt) N(% wt) O(% wt) 

Salgado, 

2002 
hexane (λ=0.82) 94.73 ± 0.15 1.50 ± 0.01 ~0 3.78 ± 0.16 

 hexane (λ=0.16) 93.01 ± 0.31 0.77 ± 0.03 0.26 ± 0.02 5.99 ± 0.36 

 hexane (λ=0.09) 92.03 ± 0.34 0.44 ± 0.07 0.23 ± 0.02 7.27 ± 0.42 

Stadler, 

2000 
gray decane soot 

(rich flame) 
97.27 ± 0.05 0.83 ± 0.04 0.20 ± 0.18 1.65 ± 0.19 

 black decane soot 
(lean flame) 

96.39 ± 0.22 0.19 ± 0.01 0.27 ± 0.09 3.22 ± 0.25 

Akhter, 

1985 
n-hexane 87-92.5 1.2-1.6 ___ 6-11 

 

 
λ = fuel /O2 on a per C basis

Anticorrelation of H- and O-content of soot depending on λ - ratio

CAST Burner

Matter 
Engineering



Knudsen Flow Reactor:  Kinetics, Branching 
Ratios and Reaction Products using MBMS

• Gas Phase is monitored:  
Molecular Beam-modulated MS

• Multispecies capabilities:  MS 
and laser-based in situ detection 
techniques

• Relative Rate Technique put on 
an absolute Basis using measured 
kesc (rate constants for effusion)

• Measurement of gas “uptake” in 
terms of uptake probabilities (γ)



NO2 Reaction Mechanism for Amorphous Carbon
DEGUSSA Materials (Tabor 1994)

• Net reaction:  NO2 + 
{C} NO + {C•O}

• γ = 5 x 10-2

• Evolution of CO, CO2

upon heat treatment 
of soot (incandescent 
lamp).

NO2 + {SS} {SS•NO2}p
Reversible adsorption

NO2 + {SS} {L}
Reversible adsorption to a 

non-reactive species

{SS•NO2}p {NO2•I} + {SS}
Conversion into an 

intermediate I (deeper layer)

{NO2•I} {NO2•R}
Transfer to reservoir R

{NO2•I} NO + {C•O}
Decomposition to NO and 

a surface oxygen complex {C•O}.  



Correlation between NO2 and HONO for reaction
of NO2 on gray (rich flame) decane soot (Stadler 2000)



Suggested Reaction Mechanism for HONO Formation 
on rich Flame Soot

• NO + NO2 + M N2O3 + M
gas phase reaction

• N2O3 + H2O 2HONO
heterogeneous reaction

• 2NO2 + H2O HONO + HNO3

Too slow

• NO2 + {C-H}red HONO + {C-}ox

• NO2 + H2O HONO + OH 

� ΔHr
0 = 40 kcal/mol (est.)

Yields of HONO and NO are position 
dependent and complementary 
(anticorrelated) in ethylene flame

Gerecke GRL 1998



CONCLUSIONS:  NO2 - Soot

• Reaction products depend on type of soot unlike kinetics (γ).

• Reaction occurs with reducing surface functional groups on    
substrate, NOT CATALYTIC decomposition.

• X-tremes:  100% NO on amorphous carbon FW2 (channel black)

100% HONO  on hexane, decane soot from rich flame

• Both carbon-matrix as well as semivolatile organic fraction of soot
partake in heterogeneous chemical reaction.

• HONO decomposes on (black) soot from lean combustion to 
yield NO as a final product:  2HONO → NO + NO2 + H2O.

• Complex surface reaction mechanism: inhibition and competition.



NO3 / gray (rich flame) decane soot
N2O5 NO3 + NO2
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Kinetics and Reaction Products have been investigated in Knudsen flow reactor
under molecular flow conditions using in situ REMPI detection of NO, NO2
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Reaction Mechanism for NO3 + decane soot

Source (N2O5 thermal dec.) → NO3 (25%) + NO2 (75%)

NO3 + {C} → NO + {C•O2} (12-17%)

Most of the lost NO3 remains adsorbed on soot

NO2 + {NO3} → N2O5 (20-24%) (+ H2O → 2HNO3)
Rich (gray) Flame Soot:

NO2 + {C-H}red HONO + {C-}ox (≈ 100%)

Lean (black) Flame Soot:

{2HONO} → {H2O} + NO + NO2 (5%)  (A lot of NO2 remains adsorbed!)

RED:  genuine NO3 reaction

BLUE:  complication as a consequence of the presence of NO2.



Steady State Uptake Coefficient for NO3 on 
decane soot: extrapolation to ambient

concentrations enabled by known rate law
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CONCLUSIONS: NO3 - Soot

• Most of lost NO3 remains adsorbed on soot

• Yield of NO is 12 (gray) -17 % (black) soot

• Adsorbed NO3 leads to N2O5 formation in the gas phase with
excess NO2

• Small yield of HNO3

• Large γ @ [NO3] 0 (ambient conditions: hundred ppt at night)

• Renoxification mechanism:  NOy NOx

• Soot substrate is partaking in the reaction



Reaction Mechanism:  N2O5 + Decane Soot

• N2O5 + {C} NO + NO2 + {C•O2}     Redox
reaction

• N2O5 + {H2O} 2 HNO3 heterogeneous 
Hydrolysis reaction – surprisingly SLOW!

Mechanism:

N2O5(ads) + {C} → N2O3(ads) + {C•O2} 

N2O3(ads) + → NO + NO2

equimolar amounts of NO and NO2

approaching 100% at low concentration.



Steady State Uptake Coefficient for N2O5 on Decane
Soot:  Importance of Rate Law !!!
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CONCLUSIONS: N2O5 - Soot

• Hydrolysis (HNO3) and Redox (NO) reaction are concurrent and 
depend on the type of soot.  Redox reaction occurs until 
exhaustion of redox reactive sites.

• Reaction products are equimolar NO + NO2. Relative yields 
depend on type of carbon substrate.  No NO3 observed in the 
gas phase.

• Renoxification Mechanism, soot substrate is reacting

• Large γ value (roughly 10 times lower than for NO3)



Reaction Mechanism for HNO3 + Soot

• 2HNO3 {N2O5} Hypothesis
• {N2O5} {NO2} + {NO3} Surface decomposition
• HNO3 {C-H}red {HONO} + {C•O2}ox Reduction of HNO3 on rich flame 

(gray) soot (NO2!!)
• {HONO} HONO gray soot (rich combustion)

• 2{HONO} {H2O} + {N2O3} NO + {NO2} black soot (lean 
combustion)

In addition:
• NO + {HNO3} HONO + {NO2} gray soot (rich or stoichiometric

flame): Supports adsorbed HNO3

• HNO3 + {HONO} 2{NO2}+ {H2O} High surface coverage:  Supports 
adsorbed HONO

• {NO2} + {C-H}red NO + {C}ox secondary reaction of NO2



CONCLUSIONS: HNO3 - Soot

• Reaction products depend on type of soot

• X-tremes:  amorphous carbon FW2 (channel black), lean

flame soot (decane): NO, small amounts of NO2.

hexane, decane soot from rich flame: HONO exclusively.

• Evidence for adsorbed HNO3, HONO.  N2O5?? 

• Renoxification – atmospheric significance:  ratio [NOy] / 

[NOx] or [HNO3] / [NOx] is overpredicted by 

photochemical transport (CRT) models.  Models “need”

more NOx.
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