The Reactions of Flame Soot with Nitrogen Oxides (NO₂, NO₃, N₂O₅, HONO, HNO₃): a brief Overview

Michel J. Rossi

Laboratoire de Pollution Atmosphérique et Sol (LPAS), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

FÉDÉRALE DE LAUSANNE

Generous Funding by Fonds National Suisse de la Recherche Scientifique (FN), Office de l'Education et de la Science (OFES), Avina Foundation and State Secretariat for Education and Research (SER) of Switzerland

SOOT

- Definition: Soot is a product of incomplete flame combustion of hydrocarbon fuels at a given value of fuel/oxygen ratio λ (stoichiometric c. at λ = 1.0) Stoichiometric Combustion: C_nH_{2n+2} + (1.5n + 0.5) O₂ → nCO₂ + (n + 1)H₂O
- Soot = EC (=BC) + Organic Phase (OC)
- Ubiquitous occurrence (on a global level)
- 10-50% of all tropospheric particulate matter is carbonaceous
- Worldwide anthropogenic emissions: 12-24 Tg/yr (Penner, 1998): N.B. Uncertainty!
- Long range transport observed (Arctic Haze)

Chemical Model of Soot Structure (Sergides et al., 1987)

SOOT (cont.)

- The only atmospheric aerosol with a sizable optical absorption in the UV/VIS range
- Remarkable influence on climate (positive radiative forcing), public health (inhalation of nanoparticles) and tropospheric chemistry (reducing properties)
 - Decrease in albedo (SSA) owing to absorption of radiation (short- and longwave radiation)
 - Increase in cloud albedo owing to activation of CCN and decrease in precipitation (Twomey)

Fig. 1. Incremental aerosol optical depth $\Delta \tau_{aer}$ (0.55 μm), which is used to drive the climate change simulations. Latitude and longitude are denoted.

JJA Surface Temperatures (Hansen, 2002)

Fig. 2. (A) Simulated JJA surface air temperature change ($\Delta T_{\rm S}$) for experiments A and B. The significance of these changes is shown in fig. S2. (B) Observed JJA $\Delta T_{\rm S}$ between 1951 and 2000, based on the linear trend. Global mean changes are in the upper right corner. SSA = 0.85

No GH Gases!

Custom-designed Co-Flow Device for reproducible generation of decane (C₁₀H₂₂) soot: Diffusion Flame

Flame	Flame	Flame	Soot	Air flow	Fuel duct	Soot
type	height	colour	deposition	$[1 min^{-1}]$	(pore \varnothing)	type
	[mm]		$[\mathrm{mg}~\mathrm{min}^{-1}]$		$[\mu m]$	
Decane						
Decane rich	~ 60	orange-red	$2.0{\pm}0.5$	1.2–1.4	17-40	"grey"

Control of Soot Production is mandatory in view of its Effects on Kinetics

Figure 6.1.1: Uptake of NO_2 on decane soot as a function of the NO_2 concentrat samples were produced using a simple oil lamp; 4 mm diameter escape orifice, is over 100 seconds, mean sample weight was 17.3 mg.

Figure 6.1.2: Uptake of NO_2 on decane soot as a function of the NO_2 steady state concentration. Soot samples were produced using the new co-flow device; 4 mm diameter escape orifice, integrated over 100 seconds, mean sample weight was 16.4 mg.

Unstable flickering flame

Stabilized (controlled) flame CAST or Co-Flow Device

Elemental analysis for several types of soot

Anticorrelation of H- and O-content of soot depending on λ - ratio

		Elemental analysis				
Author	Soot (λ)	C(% wt)	H(% wt)	N(% wt)	O(% wt)	
Salgado, 2002	hexane (λ=0.82)	94.73 ± 0.15	1.50 ± 0.01	~0	3.78 ± 0.16	
CAST Burner	hexane (λ=0.16)	93.01 ± 0.31	0.77 ± 0.03	0.26 ± 0.02	5.99 ± 0.36	
Matter Engineering	hexane (λ=0.09)	92.03 ± 0.34	0.44 ± 0.07	0.23 ± 0.02	7.27 ± 0.42	
Stadler, 2000	gray decane soot (rich flame)	97.27 ± 0.05	<mark>0.83 ± 0.04</mark>	0.20 ± 0.18	$\frac{1.65 \pm 0.19}{1.00}$	
	black decane soot (lean flame)	96.39 ± 0.22	0.19 ± 0.01	0.27 ± 0.09	3.22 ± 0.25	
Akhter, 1985	n-hexane	87-92.5	1.2-1.6		6-11	

 λ = fuel /O₂ on a per C basis

Knudsen Flow Reactor: Kinetics, Branching Ratios and Reaction Products using MBMS

- Gas Phase is monitored: Molecular Beam-modulated MS
- Multispecies capabilities: MS and laser-based *in situ* detection techniques
- Relative Rate Technique put on an absolute Basis using measured k_{esc} (rate constants for effusion)
- Measurement of gas "uptake" in terms of uptake probabilities (γ)

NO₂ Reaction Mechanism for Amorphous Carbon DEGUSSA Materials (Tabor 1994)

- Net reaction: NO₂ + {C} → NO + {C•O}
- γ = 5 x 10⁻²
- Evolution of CO, CO₂ upon heat treatment of soot (incandescent lamp).

 $NO_2 + {SS} \leftarrow \rightarrow {SS \cdot NO_2}p$ Reversible adsorption

NO₂ + {SS} ← → {L} Reversible adsorption to a non-reactive species

 ${SS \cdot NO_2}p \rightarrow {NO_2 \cdot I} + {SS}$ Conversion into an intermediate I (deeper layer)

{NO₂•I} → {NO₂•R} Transfer to reservoir R

{NO₂•l} → NO + {C•O} Decomposition to NO and a surface oxygen complex {C•O}.

Correlation between NO₂ and HONO for reaction of NO₂ on gray (rich flame) decane soot (Stadler 2000)

Figure 6.2.1: Uptake experiment of NO₂ on 'grey' decane soot; sample mass = 16.3 mg, 4 mm diameter escape orifice, NO₂ concentration = 8.3×10^{12} molecule cm⁻³.

Suggested Reaction Mechanism for HONO Formation on rich Flame Soot

- NO + NO₂ + M → N₂O₃ + M gas phase reaction
- N₂O₃ + H₂O → 2HONO heterogeneous reaction
- $2NO_2 + H_2O \rightarrow HONO + HNO_3$ Too slow
- NO₂ + {C-H}_{red} → HONO + {C-}_{ox}
- $NO_2 + H_2O \rightarrow HONO + OH$

Gerecke GRL 1998

Blue Flame

Flame top Above flame

Standard spot

 $\Delta H_r^0 = 40$ kcal/mol (est.)

Yields of HONO and NO are position dependent and complementary (anticorrelated) in ethylene flame

^a The relative yields Φ in % (per NO₂ taken up) are integrated over 50s.

Mass/mg

Ż

CONCLUSIONS: NO₂ - Soot

- Reaction products depend on type of soot unlike kinetics (γ).
- Reaction occurs with reducing surface functional groups on substrate, NOT CATALYTIC decomposition.
- X-tremes: 100% NO on amorphous carbon FW2 (channel black)
 100% HONO on hexane, decane soot from rich flame
- Both carbon-matrix as well as semivolatile organic fraction of soot partake in heterogeneous chemical reaction.
- HONO decomposes on (black) soot from lean combustion to yield NO as a final product: $2HONO \rightarrow NO + NO_2 + H_2O$.
- Complex surface reaction mechanism: inhibition and competition.

NO_3 / gray (rich flame) decane soot $N_2O_5 \rightarrow NO_3 + NO_2$

Kinetics and Reaction Products have been investigated in Knudsen flow reactor under molecular flow conditions using in situ REMPI detection of NO, NO₂

(a) m/e 30, (b) m/e 46, (c) raw REMPI signal for NO₂ detection at λ = 511 nm scaled to a MS signal at m/e 46, (d) m/e 62, (e) m/e 47, (f) m/e 63

Reaction Mechanism for NO₃ + decane soot

Source (N₂O₅ thermal dec.) \rightarrow NO₃ (25%) + NO₂ (75%)

 $NO_3 + \{C\} \rightarrow NO + \{C \cdot O_2\} (12 - 17\%)$

Most of the lost NO₃ remains adsorbed on soot

 $NO_2 + \{NO_3\} \rightarrow N_2O_5 \text{ (20-24\%)} (+ H_2O \rightarrow 2HNO_3)$

Rich (gray) Flame Soot:

 $NO_2 + \{C-H\}_{red} \rightarrow HONO + \{C-\}_{ox} (\approx 100\%)$

Lean (black) Flame Soot:

 $\{2HONO\} \rightarrow \{H_2O\} + NO + NO_2 (5\%)$ (A lot of NO₂ remains adsorbed!)

- RED: genuine NO₃ reaction
- BLUE: complication as a consequence of the presence of NO_2 .

Steady State Uptake Coefficient for NO₃ on decane soot: extrapolation to ambient concentrations enabled by known rate law

Uptake coefficient γ_{ss} of NO₃ as a function of [NO₃] (orifice diameter = 8 mm): NO₃ on black (full triangles) and gray soot (open circles).

CONCLUSIONS: NO₃ - Soot

- Most of lost NO₃ remains adsorbed on soot
- Yield of NO is 12 (gray) -17 % (black) soot
- Adsorbed NO₃ leads to N_2O_5 formation in the gas phase with excess NO₂
- Small yield of HNO₃
- Large $\gamma @ [NO_3] \rightarrow 0$ (ambient conditions: hundred ppt at night)
- Renoxification mechanism: $NO_y \rightarrow NO_x$
- Soot substrate is partaking in the reaction

Reaction Mechanism: N₂O₅ + Decane Soot

- $N_2O_5 + \{C\} \rightarrow NO + NO_2 + \{C \cdot O_2\}$ Redox reaction
- N₂O₅ + {H₂O} → 2 HNO₃ heterogeneous
 Hydrolysis reaction surprisingly SLOW!

Mechanism:

$$\begin{split} \mathsf{N}_2\mathsf{O}_{5(ads)} + \{\mathsf{C}\} &\to \mathsf{N}_2\mathsf{O}_{3(ads)} + \{\mathsf{C}\text{-}\mathsf{O}_2\} \\ \mathsf{N}_2\mathsf{O}_{3(ads)} + &\to \mathsf{NO} + \mathsf{NO}_2 \\ \text{equimolar amounts of NO and } \mathsf{NO}_2 \\ \text{approaching 100\% at low concentration} \end{split}$$

Steady State Uptake Coefficient for N₂O₅ on Decane Soot: Importance of Rate Law !!!

Uptake coefficient γ_{ss} of N₂O₅ as a function of [N₂O₅]: N₂O₅ on black (circles) and gray soot (open squares). For all measurements we used the 8 mm orifice diameter except for the point marked by the arrow where a 4 mm orifice diameter has been used.

CONCLUSIONS: N₂O₅ - Soot

- Hydrolysis (HNO₃) and Redox (NO) reaction are concurrent and depend on the type of soot. Redox reaction occurs until exhaustion of redox reactive sites.
- Reaction products are equimolar NO + NO₂. Relative yields depend on type of carbon substrate. No NO₃ observed in the gas phase.
- Renoxification Mechanism, soot substrate is reacting
- Large γ value (roughly 10 times lower than for NO₃)

Reaction Mechanism for HNO₃ + Soot

- $2HNO_3 \rightarrow \{N_2O_5\}$
- $\{N_2O_5\} \rightarrow \{NO_2\} + \{NO_3\}$

{HONO} → HONO

• $HNO_3 \rightarrow \{C-H\}_{red} \rightarrow \{HONO\} + \{C \cdot O_2\}_{ox}$

Hypothesis

Surface decomposition

Reduction of HNO_3 on rich flame (gray) soot (NO_2 !!) gray soot (rich combustion)

• 2{HONO} \rightarrow {H₂O} + {N₂O₃} \rightarrow NO + {NO₂} black soot (lean combustion)

In addition:

۲

- NO + {HNO₃} \rightarrow HONO + {NO₂}
- HNO₃ + {HONO} → 2{NO₂}+ {H₂O}
- ${NO_2} + {C-H}_{red} \rightarrow NO + {C}_{ox}$

gray soot (rich or stoichiometric flame): Supports adsorbed HNO₃ High surface coverage: Supports adsorbed HONO secondary reaction of NO₂

CONCLUSIONS: HNO₃ - Soot

- Reaction products depend on type of soot
- X-tremes: amorphous carbon FW2 (channel black), lean flame soot (decane): NO, small amounts of NO₂.

hexane, decane soot from rich flame: HONO exclusively.

Evidence for adsorbed HNO₃, HONO. N₂O₅??

more NO_v.

• Renoxification – atmospheric significance: ratio $[NO_y] / [NO_x]$ or $[HNO_3] / [NO_x]$ is overpredicted by photochemical transport (CRT) models. Models "need"