10th ETH Conference on Combustion Generated Nanoparticles Zurich, 21st - 23rd August 2006

CUTEC GmbH Clausthal-Zellerfeld

A Modern Diesel Engine Operated with Pure Rapeseed Oil;

Effects on the Emissions

Annett Wollmann#
Bernd Benker#

Stephan Rudolph*

*cutec Institut GmbH Clausthal-Zellerfeld

*eoil automotive & technologies GmbH, Alfeld

Germany

Clausthal-Zellerfeld, 22.08.2006

outline

- Motivation and scope of examination
- Technical equipment and fuel properties
- Results
 - Gaseous and particulate emissions
 - > PAH sampling
- summary

motivation

- Due to present oil prices and tax policy the use of rapeseed oil as a fuel is very interesting, e.g. for agriculture.
- ➤ Can the engines fulfil existing emission limits with rapeseed oil?
- What happens to the unlimited emissions?

scope of the examination

- ➤ The data were obtained as part of a preliminary examination of a pre-treatment system.
- ➤ The data indicate how a highly developed diesel engine reacts to a rather different fuel.
- ▶ It is not intended to show compliance with legal limits.

Technical equipment and fuel properties

Engine

VW TDI-PUI 4 cylinder 1.9 L, 85 kW, 285 Nm@1900 rpm

EURO 3 norm

Physical properties of diesel fuel and pure rapeseed oil

parameter	diesel fuel (DIN EN 590)	rapeseed oil (*)
calorific value [MJ/kg]	46	39
Cetane number	51	39
Density (15°C) [kg/m³]	0.83	0.92
Viscosity (40°C) [mm²/s]	4	75

used rapeseed oil according to the Weihenstephan standard and DIN 5160, resp.

*source: Birkner, M, Diss. Kaiserslautern 1995

Scheme of the fuel switching

Gaseous and particulate emissions

Stationary engine settings and characteristic parameters

speed	torque	power	ВМЕР	T _{diesel}
[rpm]	[Nm]	[kW]	[bar]	[°C]
1400	25	3.7	1.6	200
1600	50	8.4	3.2	270
1800	80	15	5	330
2000	186	39	12	420

measured gas concentration with rapeseed oil: diesel as reference

Total soot mass flow diesel and rapeseed oil

Carbon mass flow classified in SOF and EC

Particle number distribution for different fuels and engine operation points

PAH sampling and results

PAH sampling system

Procedure of PAH sampling and PAH analysing according to VDI Richtline 3872

- isokinetic sampling
- rinse the sampling system with Acetone
- evaporation of Acetone and change of solvent
- soxhlet extraction
- drying water residua with sodium sulphate
- filtration of the soot particles
- concentration and clean up of the samples
- measurement by HPLC

PAH species detected into the gas phase for different engine operating points (diesel fuel)

PAH species detected into the gas phase for different engine operating points (rapeseed oil)

Sum of detected PAH for different engine operating points

detected PAH species and their ring numbers

species	Number of rings
Naphtalene	2
Acenaphthene, Fluorene,	
Phenanthrene, Anthracene	3
Fluoranthene, Pyrene,	
Benz[a]anthracene, Chrysene	4
Benzo[b]fluoranthene, Benzo[k]fluoranthene, Benzo[a]pyrene, Dibenz[a,h]anthracene	5
Benzo[g,h,i]perylene	6
Ideno[1,2,3-c,d]perylene	7

Sum of PAH divided into rings for both fuels

PAH	Σ PAH diesel [μg/m³]	Σ PAH rapeseed oil [μg/m³]
2-ring*	456	384
3-ring ⁺	54	113
4-ring ⁺	17	16
5-ring⁺	0.2	0.7
6-ring*	0.002	0.4
7-ring*	0.004	0.09

not valid values

summary 1

Database only 4 stationary points

- Expectation:
 - Physical properties of rapeseed oil differ in most cases by 10 to 20 percent from diesel.
 - Viscosity is higher by a factor of 20.

 - different combustion

summary 2

- Observed (with pre-treatment):
 - Gaseous emissions in the range 0.25 up to 2.5 of diesel
 - SOF lightly higher but lower amount of elemental carbon
 - PAH average correspond with diesel

- Further research
 - > NEUDC test cycle
 - Effects on after-treatment system

10th ETH Conference on Combustion Generated Nanoparticles Zurich, 21st - 23rd August 2006

CUTEC GmbH Clausthal-Zellerfeld

Thank you for your attention!

Annett Wollmann#
Bernd Benker#

Stephan Rudolph*

*cutec Institut GmbH Clausthal-Zellerfeld

*eoil automotive & technologies GmbH, Alfeld

Germany

Clausthal-Zellerfeld, 22.08.2006