

b Universität Benn

Interaction of Nanoparticles with Cells of the Airway Epithelial Barrier:
A Study with Cell Culture Models

Barbara Rothen-Rutishauser
Institute of Anatomy, University Bern

9th ETH Conference on Combustion Generated Nanoparticles, 15th-17th August 2005, Zurich

Epithelial airway wall - in vitro system

Triple cell co-culture:

F-Actin

■ CD14

F-Actin CD86

25 nm Gold particles

30nm Titanium dioxide particles

size

material

Determination of TNF- α in the supernatants

Aerosol exposure

Cell culture at air-liquid interface

1μm Particles

F-Actin

CD14

1μm ParticlesF-ActinCD86

Conclusions:

Particles $\leq 1 \mu m$ are found within all three cell types more in macrophages and dendritic cells

TNF- α release is dependent on size and material

The cellular interplay can be studied with the triple cell co-culture system

Acknowledgements

Institute of Anatomy, University of Bern

Peter Gehr

Fabian Blank

Claudia Musso Sandra Frank

Beat Haenni Barbara Tschirren Department of Physiology and Biophysics, University of Calgary

Samuel Schürch

Department of Veterinary Anatomy, University of Bern

Nadine Kapp