OPF System S-Cube (S3 : Soot Solving System

MLF Volumetric Filtration and Active Regeneration

New Generation in Diesel Particulate Filter

Japan Certification (2004. 1.)

KT Mark Award (2004. 6.)

2004. 8.

In-Gweon Lim

CATech Inc. (Clean Air Technology)
www.CATech.co.kr

Dept. of Mechanical Eng. Myong-Ji Univ. KOREA

Object

Introduction

- CATech Inc.
- DPF system S-Cube

Profile of CATech Inc.

"Clean Air for our Descendants"

Company Vision

Leading Company with Innovative Technologies in Energy / Environmental Application for Clean Air

Main Product / Technology

Diesel Particulate Filter System (DPF)

■ Address San 38-2, Nam-dong, Yong-In,
Kyunggi-do, 449-728, Korea
■ URL <u>www.CATech.co.kr</u>
■ E-Mail <u>iglim@catech.co.kr</u>
■ Tel/Fax +82-31-336-6436 / +82-31-336-6434

Facts on structured ceramic monolith filters

Typical Active DPF system (Fig. from DieselNet)

Performance	→ High reduction efficiency with ~100 % for soot and 80~ 95% for PM			
Durability Problem	 Thermal stress and crack propagation during regeneration process due to non-homogeneous filtration and heating Special regeneration algorithm, essential for active DPF system (longer and slow regeneration) Surface filtration method, results in rapid pressure increase 			
Price and maintenance	 High price (with catalyst) Periodic cleaning and replacement of filter due to ash accumulation 			

DPF system with catalyst

■ General consent

- → Durability problem, related to structured monolith filters, is occurred by periodic regeneration process in active DPF system, even with specially prepared regeneration algorithm and flow control valves.
- → Thus passive DPF system, such as continuous regeneration system by catalyst, may be the solution.

New DPF system is often sought.

Need for new DPF system with different concept

.... specially in Korea

- Demonstration program in Korea
 - → '97~'98 : 1,400 Garbage trucks in Seoul
 - → 4 DPF systems using structures filters
 - → Installed after severe certification processes
 - → Failed
- 15 years research experience
 - → "Flame propagation within porous ceramic medium"
 - → Limit on durability with structured ceramics !!
- System price in Korea
 - ightarrow Feasible and economical price

Imagine

Sand, Sand layer

Can it be used as DPF filter?

.... Small granular chip can be used as filtering material for Nano-size DPM ??

Let us change DPF filter concept

Introduction of S-Cube:

Active DPF system,
Newly Certified
and Commercialized

S³ (S-Cube: Soot Solving System)

Japan Certified (2004. 1.)

KT Mark Award (2004. 6.)

S-Cube: Leading Edge Technology in DPF

Volumetric filtration of Diesel PM by MLF (Multi-Layered Filter) of Ceramic Granular Chip and its Integration into Active DPF system

MLF (Multi Layered Filter)

- → Innovative MLF design method and manufacturing
- → Reduction over 95~100% for soot and 70~99% for PM
- → High design flexibility on filter shape and efficiency
- → Unique solution for filter durability problem
- ightarrow Highly economical DPF system due to low filter cost
- → Favorable and slow pressure increase rate
- → Large loading capacity, regeneration at 300~700 Km driving
- → No limitations on fuel, exhaust temperature and PM loadin
- → Muffler function

ECU & Actuators

- → Independent system
- → Optimized software

MLF - Filtration Mechanism

Back pressure increase ∞ due to filter structure + due to PM filtration

< Surface filtration by other structured filters >

Ceramic filter (Surface filter)

- mean pore size: ~ 12.5 μm
- filter thickness: ~ 0.7 mm
- \rightarrow Δ P \propto mainly due to PM filtration
- → Steep increase with high PM filtration

< MLF filtration - unstructured filter >

<u>CATech MLF filter (Volumetric filtration)</u>

- mean pore size : 100 \sim 1,000 μ m
- filter thickness: > 20 mm
- different chip size and thickness for layers
- \rightarrow Δ P \propto mainly due to filter structure
- → Slow increase even with high PM filtration

MLF - Filtration Efficiency

Overall Filter Efficiency \sim Layer Thickness(L)

Pore Size (D_f)

~ Filtration by Interception + Filtration by Diffusion

Interception \sim Particle Size (d_0)

Diffusion ~ $\frac{1}{\text{Particle Size } (d_n)}$

Surface filtration ← Mainly filtration by interception

MLF filtration ← Filtration by both interception and diffusion

- As the size of PM is reduced, it can be guessed that
- → Filtration by Diffusion will be enhanced even with present MLF filter.
- → Thus it could be the solution for Nano-particle problem, which is difficult to expect from other structured (surface filtration type) filter systems.

S-Cube: 4 years development

Filter with MLF type
(SC-060MB, ~7L)

- D = 26cm, L=45cm, 32Kg

- Annular type cylinders

- PM capacity: ~40 g/Reg.

S-Cube: DPF System - In-Line Burner Regeneration

Regeneration

- Every 300~700Km
- at engine idling
- manually starting
- ~6 min~15min.
- ~350cc Diesel fuel

S-Cube: DPF System - Electric Heater Regeneratio

<Control Box & Air Compressor>

<Switch Box>

<Signal gage>

<Signal lamp>

Regeneration

- at engine stop
- 220vAC External power
- ~6.0 Kwh (60 min.)

<Motor-car application>

MLF - Design Parameters

A. Design aspects

- -Chip Size Distribution, Df
- -Layer Thickness, L
- -Filtration Area, (velocity u)

B. Environmental aspects

- -Particulate Size Distribution (dp)
- -Temperature
- -Engine displacement and RPM (velocity u)
- -Local/total filtered mass of particulates (porosity)

- Calculated local filtration rate for various sizes of particulate in layered clean filter at a typical flow condition.

MLF - Design

- Design with Nano-size PM movement analysis
- \rightarrow for filter surface area, thickness, pressure drop and efficiency.

Driving with S-Cube DPF

- Pressure, P, increases with PM loading during real road driving.
- Mass of filtered PM, Ms, is calculated by pressure, RPM and temperatures.
- Tf and To represent temperatures before and after the filter, respectively.
- Vehicle: 4,330 cc NA ISUZU ELF truck 0.5 g/kwh PM emission by Japan D-13 mode.
- Driving: In urban area of Tokyo.

Regeneration by In-line burner

Fuel penalty due to regeneration:

- ~ 350cc for each regeneration for SC-060MB DPF system (~7L Engine)
- If regeneration at every 350 Km with fuel mileage of 10Km/L vehicle ightarrow 1% fuel penalty.

S-Cube: Performance

* Official performance test data from Japan and Korea test centers

Test data at Tokyo Metropolitan Environment Research Institute

5 試験結果

(1) ディーゼル13モード

	CO (g/kWh)	HC (g/kWh)	NO _x (g/kWh)	CO ₂ (g/kWh)	PM (g/kWh)
装着前	3. 33	0.21	4. 21	1340	0.45
装着後	3.82	0.19	4.03	1360	0.04

Japan D-13 mode : (PM 91 % ↓)

(2) ディーゼル10・15モード及び粒子状物質測定

	CO (g/km)	HC (g/km)	NOx (g/km)	CO ₂ (g/km)	燃料消費率 (km/L)	粒子状物質 (g/km)
装着前	0.61	0.12	0.90	258	10.1	0.05
装着後	0.68	0.13	0.88	266	9.80	0.01

Japan 10 • 15 mode : (PM 85 % ↓)

(3) 排気煙濃度試験

最高出力時回転数に対す るエンジン回転数の割合	40%	60%	100%
装着前平均濃度(%)	2 0	4 3	3 0
装着後平均濃度(%)	0	0	0

Smoke test with load : (100 % ↓)

(4) スモークテスト

装着前平均濃度	18%
装着後平均濃度	0 %

Smoke test by free acceleration : (100 % ↓)

測定結果等の詳細は、別添のとおり。 以下余白。

* Power output reduction: less than 2% with D-13 mode test

S-Cube: Strength - Economical DPF system

without any limitations

- 1. Free of durability problem
- 2. No limitation on fuel, exhaust temp., PM level
- 3. Solution for Nano-PM problem
- 4. Quick and intensive regeneration
- 5. Economical active DPF system

S-Cube: Drawback

1. Heavy and large:

~ due to the reason that to make same pressure level with other structured filters.

2. High CO/HC emission at the moment of burner start-up

~ plan to apply "Clean-up catalyst" to one of filter layers.

Product portfolio (Aug. 2004)

Categorized by regeneration method

- DPF system with In-line burner exported to Japan retrofit market
- DPF system with electric heater regeneration (external electric power)
- DPF filter only on vehicle + external hot gas supplier (available in Dec. '04)

Application

- Retrofit
- OEM
- Diesel generator
- Construction engines and vehicles
- Ship and locomotive engine

MLF - High Technology Potential

- Solution to Nano-particle PM reduction due to diffusion filtration mechanism
- lacktriangle Economical and durability free filter system, sustainable to rapid and intense heatin
 - Various functional catalysts, applicable to each layer of MLF
- Design flexibility for various shape, efficiency and size
- Engineering potential for various applications such as locomotives and ship

→ Dual PM/NOx reduction system for retrofit

8th ETH Conf. On Combustion Generated Nanoparticles

■ DPF retrofit market in Korea

- → Starting on Jan. 2005
- → Market size for DPF/DOC : ~1,200 million(USD) till 2012 (50% from Gov.)
- \rightarrow 150,000Km or 3 yr. Warranty
- → Bus and trucks with high PM and (or) low temperature (~Euro-II)
- → Expected DPF system price for 12L engine: ~about \$6,500 (USD)

- DPF Maker in Korea with products (2004. 8)
 - → CATech Inc. (Active type DPF)
 - → SK (CRT type DPF)

Thank you very much!

CATech Inc. is looking for best partner for Europe DPF market,....