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1. INTRODUCTION

Nanoparticles formed in vehicle exhaust have received increasing attention due to their
potential adverse health effects. It has been reported that there are carbonaceous nanoparticles and
volatile nanoparticles (nucleation particles) observed in urban air and the vehicle exhaust, and
nucleation particles consist mainly of organic and sulfur compounds. The nucleation particles
exhausted from vehicles have been observed under idling, deceleration and high load conditions. But
there are a lot of uncertain points for chemical properties and formation mechanisms of the
nucleation particles.

We have conducted engine bench test, theoretical simulation and chemical analysis to clarify
the formation mechanism of the nucleation particles under idling condition in a light-duty diesel

engine system.

2. EXPERIMENTAL METHODS

Our engine system is a light-duty common-rail type DI diesel engine installing an oxidation
catalyst and is controlled by a dynamometer. All experiments were performed at steady state.
Engine-out and catalyst-out emissions were diluted by a NanoMet diluter and particle size
distributions were measured by a SMPS.

In order to realize the chemical properties of the nucleation particles, we diluted the
engine-out emissions under idling condition using a 2 stage-diluter and the diluted particles were
classified by using a MOUDI and nano-MOUDI, and the size-classified particles were analyzed by
using EPMA, FT-IR, GC-MS and TOF-SIMS.

We used three fundamental equations that treated nucleation, coagulation, condensation and

vaporization to simulate the formation of nucleation particles at idle.

3. RESULTS and DISCUSSION
The number concentration of the nucleation particles at idle was dependent strongly on fuel
property. The nucleation particles at idle were composed mainly of more than C18 hydrocarbons in

fuel and existed at the exhaust gas temperature that exceeded 100 degree C in an exhaust-pipe before



tailpipe-end and exhaust plume.

On the basis of the experimental result, we simulated the formation of the nucleation particles
in the exhaust-pipe under idling condition. The result of simulation which treated the nucleation of
Cy¢Hs4 on behalf of fuel elements was in disagreement with the experimental result. The nucleation
materials must have lower vapor pressure and lower surface tension than those of C26 n-paraffin to
obtain an enough nucleation rate. Considering the existence of the nucleation material whose vapor
pressure was 1/10,000 and surface tension was 70% to those of C,sHss, we could simulate the
formation of the nucleation particles in the exhaust-pipe under idling condition.

In order to study the existence of the nucleation materials which had the specific physical
properties derived from the theoretical simulation, particles observed at idle were classified and the
size-classified particles were analyzed.

Through FT-IR analysis, oxygenated hydrocarbons and phosphate were detected mainly in the
range of 10-56nm in diameter, although hydrocarbons were observed in all the diameter ranges.

Based on the result of FT-IR analysis, we performed detailed analysis with TOF-SIMS. The
percentage content of C-H-O hetero-compounds increased with the decrease in the range of the
nanoparticle diameter. The hetero-compounds were estimated to be low temperature oxidation
products which had the skeleton of high mass number fuel hydrocarbons and would be one of the
nucleation materials under idling condition.

The percentage contents of Zn and phosphate increased in the nanoparticle diameter ranges.
Zn and phosphate was estimated to be pyrolytic products of Zn-DTP oil additive. We evaluated a
formation characteristic of the nucleation particles by the use of both engine oil containing the
additives and that not containing the additives. The presence of the oil additives did not influence the
formation of the nucleation particles under idling condition. The pyrolytic products of Zn-DTP oil

additive would have low vapor pressure but were not the nucleation materials.

4. SUMMARY

We clarified the formation mechanism of the nucleation particles under idling condition in the
light-duty diesel engine system.

The nucleation of the C-H-O hetero-compounds (oxygenated hydrocarbons) of fuel origin
proceeds at the exhaust gas temperature that exceeds 100 degree C in the exhaust-pipe and the
nucleation particles at idle are formed by the condensation of high boiling point hydrocarbons of fuel
elements to nucleus. The nucleation particles at idle consist of a small amount of the oxygenated

hydrocarbons of fuel origin and a large amount of more than C18 hydrocarbons of fuel elements.
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%Introduction

= Nucleation particles were observed

under following engine operation conditions.
= Idling (non-load) condition
= Deceleration condition
= High load condition
(with high S fuel and/or oxidation catalyst)

= But there are a lot of uncertain points for
chemical properties and formation mechanisms
of nucleation particles.



%Nucleation Theory

= Formation mechanism of nucleation particles
observed under high load conditions would be
explained by H,S0O,-H,0 binary homogeneous
nucleation (BHN) theory.
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= In the case of idling and deceleration conditions,
formation mechanisms of nucleation particles
have not been explained theoretically yet.



%Ob_jective and Approach

= [0 clarify formation mechanism of nucleation
particles under idling condition through
following approaches.

= Engine bench test
= Simulation of nucleation particle formation
= Chemical analysis of nucleation particles



%\I 1. Engine bench test



%Diesel Engine Experiment
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%Diesel Fuel Specifications

FUEL1 FUEL2 FUEL3
(High S) (Conventional) | (Swedish Class 1)
Density @15deg C 0.8312 0.8323 0.810
Cetane Index 55 53 51.9
Aromatics vol% 27.6 18.5 2.4
Sulfur mass ppm 430 28 4
Distillation (deg C)
10% 214.5 210.0 209.2
30 248.0 239.5 216.2
50 271.5 264.5 224.9
70 297.5 299.0 236.3
90 331.5 333.5 255.0
End point 370.5 358.5 280.4




%Nucleation Particles at idle
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= Formation of nucleation particles at idle depends
strongly on fuel property.



%Chromatogram of SOF
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= More than C18 hydrocarbons in fuel are main
components of nucleation particles at idle.
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%Where are Nucleation Particles formed?
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= Nucleation particles exist at exhaust gas temperature
that exceeds 100 C in exhaust-pipe.
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%Nucleation Particles at idle

= Nucleation particles exist at exhaust gas
temperature that exceeds 100 C in exhaust-pipe.

= More than C18 hydrocarbons in fuel are main
components of nucleation particles at idle.

11



2. Simulation of Nucleation

%\I Particles at Idle
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%Nanoparticle formation Mechanisms

Formation mechanism of nucleation particles at idle
cannot be explained by BHN theory as nucleation
particles form at exhaust gas temperature that

exceeds 100 C in exhaust-pipe.

- Binary Homogeneous Nucleation (BHN) theory -

H 2504 (Va pOI‘) ...........

H,0 (Vapor) - 8
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%Hydrocarbon Nucleation

s We tried to simulate formation of nucleation

particles at idle through hydrocarbon nucleation
by following three fundamental equations.
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Nanoparticle Formation at Idle
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This result suggests the existence of other nucleation materiallss
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= Considering 1/10,000 in vapor pressure and 70% in
surface tension to those of C,;H:,, we can simulate

enough nucleation rate. .



Simulation of Nanoparticle Formation

%
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= Considering specific physical properties of NM, simulation

result is in good agreement with experimental result. -



3. Chemical Analysis of

%\\ Nucleation Particles at idle

84.8 85.0 852 854
84.8 85.0 852 854

848 850 852 85.4
18



Experimental Set-up

» Engine operating (— |
condition : 750rpm-ONm 4-cyl|nder (2L)
DI diesel engine
« Fuel : S=420ppm diesel Y —

fuel | ﬁj[i .

DEKATI Dilutor

i . » st
( Dilution ratio: 64 ) (2%5°C) (170°C)

-
{ ZA'\Si"rC ) HH
Air
(120°C)

I:I
1

SMPS

Sampling period : 5 hours

* SMPS: Scanning Mobility Particle Sizer



%Classified Particle Diameter Ranges
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FT-IR Analysis of Classified Particles
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= Phosphate and oxygenated HCs are detected mainly
in the range of 10-56nm in diameter. 51



TOF-SIMS Analysis for Heterocompounds

Fragment signal ............. s Fragment signal
of heterocompounds P of aliphatic hydrocarbons

Engine oll

84.8 85.0::852 854 m/z

100-180nm

848 85.0iy852 854 mM/Z

10-18nm \A4

848 850 852 854 m/z

Py



Heterocompounds in Nucleation particles

<Heterocompounds, C-H-O> <Aliphatic hydrocarbons, C-H>
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= Percentage content of hetero-compound increases
in the range of nanoparticle diameter.
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%Effect of Inorganic Compounds

Ion count ratio to m/z 45
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s Percentage contents of Zn and PO, increase in the range
of nanoparticle diameter.

= Zn and PO, would be pyrolytic products of oil additive

(Zn-DTP).

24



%Nucleation at Idle and Oil Additives
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= Oil additives do not contribute to nucleation of
nanoparticles at idle.
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%Analysis of Nucleation Particles at Idle

We analyzed nucleation particles to clarify some nucleation
materials in the formation of nucleation particles at idle.

= Hydrocarbons of fuel or oil are observed in the whole
diameter range and its percentage contents are
independent of particle diameter.

= Hetero-compounds (low temperature oxidation HCs)
exist in a high ratio in the range of nanoparticle
diameter.

=« These compounds have lower vapor pressure than high
boiling point HCs in fuel (C,¢Hs,) have.

» Hetero-compounds would be nucleation material under
idling condition.

26



Formation Mechanism of Nucleation
Particles under Idling Condition

Vapor Pressure: 1/10,000 X C,¢Hc,
Surface Tension: 0.7 X C,¢Hc,

$

Gas Phase

Exhaust plume

_ Exhaust pipe & Atmosphere
E‘. ........................................................... }E‘. ........................ }

Hetero-compounds

(C-H-0) .
Nucleation Condensation
Gas Phase
ow temperature oxidation products More than C18

(oxygenated hydrocarbons) Hydrocarbons (Fuel)

Main Components of nanoparticles at idle
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Thank you very much

%\I for your attention!!
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GC-MS Analysis of Classified Particles 1

Elution peak of fuel elements <m/z=85>
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= Elements of fuel and oil exist in a whole range of

particle diameter. 2



%Comparison between m/z85 and m/z43
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= This result suggests existence of heterocompounds
(C-H-O) in the range of nanoparticle diameter. 31
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= Nucleation particles during
deceleration are composed of

engine oil elements. -



Experimental Set-up for Transient Test

« Engine operating condition : ST e
2500rpm-110Nm (=

—
-> 2500rpm-Motoring 4-cylinder (2L)
DI diesel engine

\ — )

« Fuel: S=420ppm diesel

fuel ﬁjﬁ .
DEKATI Dilutor

i . » 1st
( Dilution ratio: 64 ) (2%5°C) (250°C)

_ITH =

DMSS00 — Measurement of

HH exhaust gas temperatur

Air
( 25°C)

Air
( 250°C)

e S o 1,000nm
® Spectrum output at 16 sizes per decade
® Continuous output of total mass and number
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Formation of Nucleation Particles
under deceleration condition

Decrease in exhaust

40T g a S emperatue

E

127C

141C
173C
= 198C
2500rpm Motoring ( )
@«

= 134C
2.0x10° :

dN/dlogDp (1/cm3)

2500rpm-110Nm (2900)

1000

0.0
100

Particle Diameter (nm)

= Nucleation particles under deceleration condition also
exist at more than 100 C of exhaust gas temperature. 34



%Particle Size Distribution during Motoring
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FT-IR Analysis of Nucleation Particles

Under Motoring Condition
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= Hydrocarbons and oxygenated hydrocarbons are the main

components of nucleation particles under motoring condition.
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Ion count ratio to m/z 43

0.05

0.04

0.03

0.02

0.01

0.00
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= The percentage content of aliphatic hydrocarbons
increases with decrease in particle diameter in contrast
to that of the hetero-compounds.
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Nucleation Materials under Motoring 2
TOF-SIMS with Ag-Enhanced Method

< 10-18 nm Particles >
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= More than C40 paraffins of oil elements would be
nucleation material under motoring condition ( under
deceleration condition). 38



Formation Mechanism of Nucleation
Particles under Deceleration Condition

Vapor Pressure: 1/10,000 X C,¢Hc,

Surface Tension: 0.7 X CyHs, Exhaust plume
' _ Exhaust pipe & Atmosphere
.4. ........................................................... }.‘. ........................ >

DEecrease In Exnaust Gas remperature

Gas Phase
More than C40

Hydrocarbons

Nucleation Condensation

Gas Phase
More than C25

Hydrocarbons (Oil)

Main Components of nucleation particles
under deceleration condition
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Effect of Soot Number Concentration
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= Suppression of soot causes increase in number concentration

and diameter of volatile nanoparticles. w0



%EPMA Analysis of Classified particles
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= Zn and P increase in the range of nanoparticle diameter
= EPMA data is in good agreement with TOF-SIMS data.
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Introduction

We clarified three engine operating conditions where
volatile nanoparticles were observed and main

components of volatile nanoparticles exhausted from
a light-duty diesel engine system.

. . I I
Engine O_peratlng dle Deceleration Mid- & Hi-load
Conditions (non-load)
Main Components > C;g HCs > C,: HCs H,SO,
Source Fuel QOil SulfurigofTeplounds
>l >l >l
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Nanoparticles at idle
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= Nanoparticles at idle are composed of more than C18
hydrocarbons in fuel. l:l



%Nanoparticles under High Load Conditions

1800rpm-206Nm (EGR-off)
( with oxidation catalyst)

10°
S=430ppm
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= Number concentration of nanoparticles depends on
sulfur content in fuel. Nanoparticles under high load

conditions consist of H,SO, formed by SO; +nH,0.
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%Objective & Method

= [0 clarify some nucleation materials in formation of
volatile nanoparticles at idle.

1. Particle sampling by using MOUDI & nano-MOUDL.

2. Analysis of classified particles (10nm-320nm) with
EPMA, FT-IR, GC-MS and TOF-SIMS.
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PAH Contents in Classified Particles
- GC-MS Analysis -
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= PAH content decreases in the range of 10-56nm in diameter.
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