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Introduction

- aerosol sample is drawn from the engine exit plane to the instruments through
more than 30 m long sample lines

- particles stick to the tube walls due to diffusional and thermophoretic effects

- first principle model predicts well the particle transport efficiency in terms of
particle number concentration

- PM mass losses are more complicated - particle effective density changes with size

- a reliable estimate of the PM at the engine plane essential for the emissions
quantification and modeling

Results and outlook O

- line loss correction factor for PM mass ranged from 2.75 at engine idle to 1.35 at
maximum power conditions using the size-dependent effective density

- the unit density assumption provided a similar range of correction factors, but
might have overestimated the losses at high thrust as well as underestimated at
low thrust

- probe inlet temperature needs to be measured for a more accurate thermophoretic
loss prediction

- future work will focus on intercomparison with models that do not use measured
effective density and particle size
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Total PM mass (TPM) and measured BC mass O

- TPM calculated from the effective density distributions and PSD agreed with the
BC mass measured by the MSS
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Method QO

- measure non-volatile PM mass (equivalent / refractory black carbon; BC)

- measure particle size distributions (PSD)

- fit lognormal distributions and find dependence on engine thrust

- determine effective density distributions from mass-mobility measurements
- model the particle transport efficiency from the probe tip to the instruments

- iterate the PM mass derived from the lognormal PSD model and the effective ;} ’ : '\D/'I\S/";OO N
density distributions until it is equal to the measured PM mass 2 80, - e SMPS -
- correct the model PM mass distribution using the inverted penetration function g - . y
- calculate the line loss correction factor as a ratio of the corrected and uncorrected g sol 'l Lo i
(measured) PM mass & :
: o
Input 5 40 |
"GMD(Fc,a),/| /GSD(F ) Peft (i) | Nooh (dn) g
Ntot,0 ? 2 20 .
F 3 5
Ntot,i C,rel fL
- 0 _______ V. | 2 | 2 | 2 |
‘ ‘ 0 20 40 60 80 100
% rated thrust corrected to sea level
line-loss corrected TPM 3
TPM(GMD, GSD, Ny, pe . nD3 .
(G 6B, Rar, H) _q TPMPSD instrument — Zz—l 1 6p’ peff(Dp,i)
equal to measured BC TPM(GMD, GSD, Niot, feft Tpen)
Effective density: distributions and mean QO
calculation - power law fits of experimental data (CPMA mass over mobility equivalent volume)
FG el relative engine thrust ‘ - increase with engine thrust: primary particle size growth and change of the
aMD geometric mean diameter lineloss internal structure from amorphous to crystalline (Liati et al., 2014, submitted to
GSD geometric standard deviation C?rregtéon faCt_Or Env. Sci. Technol.)
Moen inverted penetration function or Mass. - mean effective density decreased with engine thrust (GMD shifted to larger
Deff effective density function fpe = ggl\f;;;; diameter particles that have lower effective density)
Niot particle number concentration \_ - x ) - could be approximated as unit denisty (1000 kg/ms3) for this engine

output

top x: volume median diameter [nm]

Sampling and measurement O 1800 g 25 075 100 125 150 175
. . . . . T mass-mobility exponents: D, =264 - 1600 7= ' L

- CFM56-7B26/3 engine (Boeing 737, Airbus A320) tested in an engine test cell over r600 | 5 — 050 1400 o o DMS500 p =983 +7.7 kg/m’

the entire thrust range from idle to maximum power " ' D:”‘ _537 | < zgg‘ Opnn® -

- primary PM measurements on the diluted line (factor ~10:1; PM line) 21400 1 D gpol® ° P oewy 1

) o o o > bt . 4

- ancillary PM measurements on the undiluted line (Annex 16 line) fZ Z 600 .
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Particle size distribution O
- Geometric mean diameter (GMD) and the geometric standard deviation
(GSD) determined from the lognormal fits increased linearly with engine thrust
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