

AGING OF DIESEL ENGINE EXHAUST, PELLET BOILER EXHAUST, AND THEIR MIXTURE

Ari Leskinen Finnish Meteorological Institute Atmospheric Research Centre of Eastern Finland

ETH Zürich, 24.6.2014

The research unit "ILMARI" at UEF

- emission sources (stoves, burners, vehicles) and dilution
- environmental chamber
- on-line cell exposure (air-liquid interface) and animal whole body exposure units

The transformation chamber at ILMARI

- 125 µm FEP Teflon
- 3.5 m × 3.5 m × 2.4 m (29 m³)
- movable top, lines and cables through the floor, maintenance hatch
- purified air source ~170 lpm
- blacklight lamps @ 365 nm
- an air-conditioned enclosure with reflective walls

The emission sources

- Biotech PZ25RL, model 2007, 25 kW, top-feed fuel input, logic-controlled fans for combustion air distribution, secondary air reduced (by 17 %), commercial pellets (mostly pinewood).
- Seat Toledo 1.9 TDI, model 2002, mileage 370 tkm, oxy-cat, no DPF, commercial diesel, on 2WD dyno 50 km/h, ~20 % load.
- Dilution: porous tube (DR 2.9), ejector (9.7), chamber (10.7), total DR ~300.

Experiments in the first campaign

- pellet boiler exhaust (2 runs: either with or without HONO)
- diesel engine exhaust (3 runs: either with or without HONO)
- mixture of pellet burner and diesel engine exhausts (2 runs: both runs with HONO, 1 with and 1 without alphapinene)
- in each experiment $\rm O_{_3}$ and UV radiation present, chamber temperature 294–299 K, relative humidity 45–60 %
- HONO was injected before the lights were switched on, the resulting in initial [OH] of ~2 × 10⁷ molecules/cm³

Measured properties (and instruments)

- particle size distribution (SMPS) and morphology (TEM)
- particle hygroscopicity (H-TDMA) and chemical composition (HR-ToF-AMS)
- light absorption by particles (7-wavelength Aethalometer) and absorption Ångström exponent

SMPS: Scanning mobility particle sizer, TEM: Transmission electron microscopy, H-TDMA: Hygro-scopicity tandem differential mobility analyzer, HR-ToF-AMS: High resolution - time-of-flight - aerosol mass spectrometry

The size distributions

- number median diameter from 80–90 to 120–130 nm
- calculated volume change (spherical particles, wall loss corrected)
 - pellet: 62.4...71.6 µm³/cm³ (+15 %)
 - diesel: 50.8...68.4 µm³/cm³ (+35 %)
 - mix: 56.2...68.1 μm³/cm³ (+21 %)
- calculation for the diesel exhaust particles and the mixture fails due to the non-spherical form of the diesel particles (see the next slide)

Morphology

Particle chemical composition

upper: without HONO, lower: with HONO

Pellet, initial [NO,] 16–46 ppb

The effect of alphapinene

Optical properties (preliminary)

Summary

 no remarkable changes in the properties of the diesel engine exhaust during aging

• in the pellet boiler exhaust the particulate mass increased due to formed particulate nitrogen compounds during aging (no such increase in organics as mentioned in my abstract!)

• in the mixture the particle phases were externally mixed but the gas phases mixed well

- the hygroscopicity of the pellet boiler exhaust particles was different in the mixture than when alone
- more SOA formed when alphapinene was present

• more aging experiments for mixtures are needed

Thank you for your attention !

Ari.Leskinen@fmi.fi

