Particle Emissions of Direct Injection IC Engine Fed with a Hydrogen-rich Gaseous Fuel

Andy Thawko, Harekrishna Yadav, Michael Shapiro and Leonid Tartakovsky

18 June 2019

23rd ETH Conference on Combustion Generated Nanoparticles
Outline

- Scientific background - Fuel Reforming
- Experimental Setup
- Performance of ICE with Thermo-Chemical Recuperation
- Particle Emission
- Summary
Petroleum consumption for transportation

92% of the transportation energy consumption is from crude oil

Source: U.S Energy Information Administration (April 2018)
European emission legislation

Diesel Passenger Cars:

<table>
<thead>
<tr>
<th>Emissions</th>
<th>Unit</th>
<th>Euro 1</th>
<th>Euro 2</th>
<th>Euro 3</th>
<th>Euro 4</th>
<th>Euro 5a</th>
<th>Euro 6b/c</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOx</td>
<td>mg/km</td>
<td>-</td>
<td>-</td>
<td>500</td>
<td>250</td>
<td>180</td>
<td>80</td>
</tr>
<tr>
<td>HC+NOx</td>
<td></td>
<td>970</td>
<td>700</td>
<td>560</td>
<td>300</td>
<td>230</td>
<td>170</td>
</tr>
<tr>
<td>CO</td>
<td></td>
<td>2720</td>
<td>1000</td>
<td>640</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>PM</td>
<td></td>
<td>140</td>
<td>80</td>
<td>50</td>
<td>25</td>
<td>5.0</td>
<td>4.5</td>
</tr>
<tr>
<td>PN</td>
<td>#/km</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6 \times 10^{11}</td>
</tr>
</tbody>
</table>

Gasoline Passenger Cars:

<table>
<thead>
<tr>
<th>Emissions</th>
<th>Unit</th>
<th>Euro 1</th>
<th>Euro 2</th>
<th>Euro 3</th>
<th>Euro 4</th>
<th>Euro 5a</th>
<th>Euro 6b/c</th>
</tr>
</thead>
<tbody>
<tr>
<td>THC</td>
<td>mg/km</td>
<td>-</td>
<td>-</td>
<td>200</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>NOx</td>
<td></td>
<td>-</td>
<td>-</td>
<td>150</td>
<td>80</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>HC+NOx</td>
<td></td>
<td>970</td>
<td>500</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO</td>
<td></td>
<td>2720</td>
<td>2200</td>
<td>2300</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>PM</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5.0</td>
<td>4.50</td>
</tr>
<tr>
<td>PN</td>
<td>#/km</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6 \times 10^{11}</td>
</tr>
</tbody>
</table>
Fuel energy distribution

Coolant

Exhaust

Output

About 1/3 of the energy

400 °C < T_{Exhaust} < 900 °C

Why to waste it...?!
The goal

Feasible solution

- Emission mitigation
- Efficiency improvement
- Crude oil dependency reduction
Our goal

On-board Fuel reforming

Emission mitigation

Efficiency improvement

Crude oil dependency reduction

Hydrogen combustion

Waste heat recovery

Methanol - alternative (renewable) fuel
Primary fuel selection
METHANOL

LIQUID METHANOL:
- Promising primary liquid fuel
- Low carbon-intensity
- Potentially renewable
- Can be produced from natural gas or coal
 - Alternative for oil as a short term solution
- Can be produced from captured CO₂ – PtX fuel (electrofuel)
- No significant infrastructure change needed
- Low reforming temperatures

GASEOUS REFORMING PRODUCTS:
- Hydrogen-rich gaseous fuel: (75%)H₂+(25%)CO₂
- Better fuel properties
 - LHV increase
 - Higher antiknock quality
 - High laminar flame speed
 - Wide flammability limits
- Zero-impact pollutant emissions
- No problems of onboard hydrogen storage

MethanolSteam Reforming (MSR): \(CH_3OH_{(g)} + H_2O_{(g)} \rightarrow CO_2 + 3H_2 \quad \Delta H = 50 \text{ kJ/mol} \)
Thermo-Chemical Recuperation (TCR)

- Primary alternative (renewable) and low-carbon intensity liquid fuel
- Waste heat recovery process
- On-board hydrogen production
- Ultra-low pollutant emissions

Methanol Steam Reforming (MSR)

\[CH_3OH + H_2O \rightarrow 3H_2 + CO_2 \quad \Delta H \approx 50 \text{ kJ/mol} \]

Poran, Thawko et al., Int. J Hydrogen Energy, 2018
Experimental Setup

Single cylinder, spark ignition engine (Robin EY-20 based)

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bore x Stroke, mm</td>
<td>67x52</td>
</tr>
<tr>
<td>Displacement, cm³</td>
<td>183</td>
</tr>
<tr>
<td>Compression ratio</td>
<td>6.3</td>
</tr>
<tr>
<td>Power, kW @ speed, rpm</td>
<td>2.2 @ 3000</td>
</tr>
<tr>
<td>Fuel supply system</td>
<td></td>
</tr>
<tr>
<td>Gasoline</td>
<td>Carburetor</td>
</tr>
<tr>
<td>Hydrogen-Rich Reformate</td>
<td>Direct injection</td>
</tr>
</tbody>
</table>

Engine head with pressure transducer, spark plug and injector

5 - In-cylinder pressure sensor
6 - Reformate direct injector
7 – Encoder
9 – Engine control system
24 – Reformer
33 – EEPS system
Measured reformate composition

Methanol Steam Reforming (MSR)

\[CH_3OH + H_2O \rightarrow 3H_2 + CO_2 \quad \Delta H \approx 50 \text{ kJ/mol} \]

Poran, Thawko, Eyal, Tartakovskyy, Int. J Hydrogen Energy, 2018
Thermo-Chemical Recuperation system Performance

Total particle concentration comparison

\[\text{MSR} \]
\[CH_3OH + H_2O \rightarrow 3H_2 + CO_2 \]
Particle size and number distribution - Effect of Fuel
Particle size and mass distribution - Effect of Fuel

Based on Maricq’s et al. density distribution

\[
\rho_{eff} = 1.2378 \times \frac{4}{3} e^{-0.0048 D_p}
\]

\[
m_p = \rho_{eff} \frac{4}{3} \pi \left(\frac{D_p}{2}\right)^3
\]

Maricq et al., Aerosol Science and Technology, 2006
Total particle concentration comparison

Previous studies showed significant PN reduction with hydrogen combustion

Singh et al., Fuel, 2016
High compression ratio ICE
Experimental setup

Single cylinder, Petter AD1 based

<table>
<thead>
<tr>
<th>Description</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bore x Stroke, mm</td>
<td>80x73</td>
</tr>
<tr>
<td>Displacement, cm³</td>
<td>367</td>
</tr>
<tr>
<td>Compression ratio</td>
<td>16</td>
</tr>
<tr>
<td>Power, kW @ speed, rpm</td>
<td>5.3 @ 3000</td>
</tr>
<tr>
<td>Fuel injection system</td>
<td></td>
</tr>
<tr>
<td>Diesel</td>
<td></td>
</tr>
<tr>
<td>Hydrogen-Rich Reformate</td>
<td></td>
</tr>
<tr>
<td>Direct</td>
<td></td>
</tr>
<tr>
<td>Direct</td>
<td></td>
</tr>
<tr>
<td>Port</td>
<td></td>
</tr>
</tbody>
</table>

A comparison of direct and port reformate injection
Fuel injection strategy - Efficiency

- Wide open throttle in all cases
- 13-19% improvement for MSR DI
- 23-26% improvement for MSR PI

PI limitations:
- Maximal power loss
- Low volumetric efficiency
- Abnormal combustion - backfire, pre-ignition
High pressure hydrogen-rich reformate injection

- Underexpanded gaseous jet
- Possible mechanisms for particle formation
Underexpanded jet in gaseous fuel DI

<table>
<thead>
<tr>
<th>Classification</th>
<th>Nozzle pressure ratio (NPR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subsonic jet</td>
<td>$1 < \frac{P_0}{P_\infty} < 1.893$</td>
</tr>
<tr>
<td>Moderately underexpanded jet</td>
<td>$2.08 < \frac{P_0}{P_\infty} < 3.8$</td>
</tr>
<tr>
<td>Highly underexpanded jet</td>
<td>$3.84 < \frac{P_0}{P_\infty}$</td>
</tr>
</tbody>
</table>

Crist S. et al., AIAA J., 1966

Snedeker RS. et al., J. Fluid Mechanics, 1971
Particle formation in DI-ICE fed by hydrogen-rich reformate- Possible mechanisms

- Jet-wall impingement
- Lubricant vapor entrainment towards the gaseous jet
- Hydrogen low quenching distance

Kim et al. (2001)
DI-ICE with High-Pressure Thermo-Chemical Recuperation was developed enabling:

- Efficiency improvement (up to 39%)
- Gaseous pollutant emission reduction (up to 94%, 96% and 97% for NOx, CO and HC, respectively)
- Direct injection of reformate leads to higher particle formation compared to gasoline
- Future research will focus on identification of particle formation mechanism, and development of methods to mitigate particle emission

Summary
The financial support of:

- Israel Science Foundation (ISF)
- Israel Ministry of Environmental Protection
- Israel Ministry of Energy
- Nancy and Stephen Grand Technion Energy Program (GTEP)
- The Council for Higher Education (CHE)- Planning and Budgeting Committee (PBC)

is highly appreciated
Thank you for your attention!

Further information:

Andy Thawko
Technion – Israel Institute of Technology
Grand Technion Energy Program
email: Andythawho@gmail.com

Leonid Tartakovskiy
Technion – Israel Institute of Technology
Mechanical Engineering Faculty
Grand Technion Energy Program
email: tartak@technion.ac.il